- #1

IntegrateMe

- 217

- 1

First we find x(θ), y(θ)

[tex]x(\theta) = rcos(\theta)[/tex]

[tex]y(\theta) = rsin(\theta)[/tex]

Then we find x'(θ) and y'(θ) to use the formula:

[tex]L = \int_\alpha^β \sqrt{x'(\theta)^2 + y'(\theta)^2} d\theta[/tex]

My problem is that I don't know how to get the limits of integration. The answer key says that they are from 0 to π, but I would have guessed π to 2π, since that represents everything below the x-axis? Any help would be appreciated.

Thanks, guys!