bham10246
- 61
- 0
Hi, I'm working on some homology problems but I need help figuring out the induced map from a given map, say f:X\rightarrow Y.
For example, compute H_* (\mathbb{R}, \mathbb{R}^n - p) where p \in \mathbb{R}^n.
So for n=1, we have the long exact sequence
0 \rightarrow H_1(\mathbb{R}^n-p)=0 \rightarrow H_1(\mathbb{R}^n)=0 \rightarrow H_1(\mathbb{R}^n, \mathbb{R}^n-p)
\rightarrow H_0(\mathbb{R}^n-p)=\mathbb{Z}^2 \rightarrow H_0(\mathbb{R}^n)=\mathbb{Z} \rightarrow H_0(\mathbb{R}^n, \mathbb{R}^n-p)\rightarrow 0.
So I got H_1(\mathbb{R}^n, \mathbb{R}^n-p)=\mathbb{Z} but what is H_0(\mathbb{R}^n, \mathbb{R}^n-p)? Is H_0(\mathbb{R}^n, \mathbb{R}^n-p)=\mathbb{Z} or 0? I first thought it was \mathbb{Z} because it's path connected, but I'm not so sure anymore. It's because H_0 (\mathbb{R}^n-p)=\mathbb{Z}^2. So since (\mathbb{R}^n-p) \rightarrow \mathbb{R}^n is an inclusion map, what is the induced map H_0 (\mathbb{R}^n-p) \rightarrow H_0(\mathbb{R}^n)? Is it injective or surjective? If I have this one key information, then I'm sure I can deduce the relative homology groups.
Now for n = 2, we have
0 \rightarrow H_2(\mathbb{R}^n-p)=0 \rightarrow H_2(\mathbb{R}^n)=0 \rightarrow H_2(\mathbb{R}^n, \mathbb{R}^n-p)
\rightarrow H_1(\mathbb{R}^n-p)=\mathbb{Z} \rightarrow H_1(\mathbb{R}^n)=0 \rightarrow H_1(\mathbb{R}^n, \mathbb{R}^n-p)
\rightarrow H_0(\mathbb{R}^n-p)=\mathbb{Z} \rightarrow H_0(\mathbb{R}^n)=\mathbb{Z} \rightarrow H_0(\mathbb{R}^n, \mathbb{R}^n-p)\rightarrow 0..
I know H_2(\mathbb{R}^2, \mathbb{R}^2-p)=\mathbb{Z} but are H_1(\mathbb{R}^2, \mathbb{R}^2-p) and H_0(\mathbb{R}^2, \mathbb{R}^2-p) isomorphic to the integers as well? If so, why?
Again, I think if I understand the following: if f:A\rightarrow X is an inclusion map, is it always true that the induced map must be surjective? Can it be injective as well?
Thank you so much for your help!
For example, compute H_* (\mathbb{R}, \mathbb{R}^n - p) where p \in \mathbb{R}^n.
So for n=1, we have the long exact sequence
0 \rightarrow H_1(\mathbb{R}^n-p)=0 \rightarrow H_1(\mathbb{R}^n)=0 \rightarrow H_1(\mathbb{R}^n, \mathbb{R}^n-p)
\rightarrow H_0(\mathbb{R}^n-p)=\mathbb{Z}^2 \rightarrow H_0(\mathbb{R}^n)=\mathbb{Z} \rightarrow H_0(\mathbb{R}^n, \mathbb{R}^n-p)\rightarrow 0.
So I got H_1(\mathbb{R}^n, \mathbb{R}^n-p)=\mathbb{Z} but what is H_0(\mathbb{R}^n, \mathbb{R}^n-p)? Is H_0(\mathbb{R}^n, \mathbb{R}^n-p)=\mathbb{Z} or 0? I first thought it was \mathbb{Z} because it's path connected, but I'm not so sure anymore. It's because H_0 (\mathbb{R}^n-p)=\mathbb{Z}^2. So since (\mathbb{R}^n-p) \rightarrow \mathbb{R}^n is an inclusion map, what is the induced map H_0 (\mathbb{R}^n-p) \rightarrow H_0(\mathbb{R}^n)? Is it injective or surjective? If I have this one key information, then I'm sure I can deduce the relative homology groups.
Now for n = 2, we have
0 \rightarrow H_2(\mathbb{R}^n-p)=0 \rightarrow H_2(\mathbb{R}^n)=0 \rightarrow H_2(\mathbb{R}^n, \mathbb{R}^n-p)
\rightarrow H_1(\mathbb{R}^n-p)=\mathbb{Z} \rightarrow H_1(\mathbb{R}^n)=0 \rightarrow H_1(\mathbb{R}^n, \mathbb{R}^n-p)
\rightarrow H_0(\mathbb{R}^n-p)=\mathbb{Z} \rightarrow H_0(\mathbb{R}^n)=\mathbb{Z} \rightarrow H_0(\mathbb{R}^n, \mathbb{R}^n-p)\rightarrow 0..
I know H_2(\mathbb{R}^2, \mathbb{R}^2-p)=\mathbb{Z} but are H_1(\mathbb{R}^2, \mathbb{R}^2-p) and H_0(\mathbb{R}^2, \mathbb{R}^2-p) isomorphic to the integers as well? If so, why?
Again, I think if I understand the following: if f:A\rightarrow X is an inclusion map, is it always true that the induced map must be surjective? Can it be injective as well?
Thank you so much for your help!

Last edited: