(adsbygoogle = window.adsbygoogle || []).push({}); 1.Find the vertical and horizontal asymptotes (if any), intervals of increase and decrease, local maximum and minimum values, intervals of concavity and inflection points for f(x) = 1 / (L - x^1/2)

3. I found the vertical asymptote to be "x=0" , I found the horizontal asymptote to be "y=0"

So to find intervals of increase and decrease you have to find the derivative, which I found to be 2*x/(L^2-2*x^2*L+x^4) from here I plugged in values.

To find local maximum and minimum values you have to find the second derivitive, which I found to be (2*L+6*x^2)/(L^3-3*x^2*L^2+3*x^4*L-x^6)

Then I came to the conclusion that there is no inflection point because there are no local maximum's meaning no change in concavity

I'm not sure if I did these right, would really appreciate some help, thanks.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Concavity, inflection point, maxima, minima

**Physics Forums | Science Articles, Homework Help, Discussion**