Insights Conceptual Difficulties in the Roles of Variables - Comments

haruspex
Science Advisor
Homework Helper
Insights Author
Gold Member
2024 Award
Messages
42,639
Reaction score
10,428
haruspex submitted a new PF Insights post

Conceptual Difficulties in the Roles of Variables

variables-80x80.png


Continue reading the Original PF Insights Post.
 
  • Like
Likes Ssnow, Greg Bernhardt and spaghetti3451
Mathematics news on Phys.org
haruspex said:

I think there are still important pitfalls that might deserve deeper explanations and details:
  1. The opposition variable/constant is not a mathematical one but a meta-mathematical/logical one. Variables and constants are not mathematical objects but notation tools to describes mathematical objects (that's why for example you can say at the same time that ##x## is a variable and ##x## is a real number). A big pitfall with the ubiquitous Leibnitz notations (##\frac{d f}{d x}##, ##\frac{\partial f}{\partial x}##, ...) is that it mixes mathematical objects (like function ##f##) with notation devices (like variable ##x## which represents one of the function "slots", i.e. argument position and absolutely not a number here).
  2. As mentioned it is a common abuse of notation to use the same function symbol for related but distinct functions when their output has the same semantical meaning but the arguments (= the coordinate system) are different. One of the big issue with this abuse of notation is this one:
    Consider ## (x, y) ## and ## (x, u) ## two coordinate systems with the common coordinate ##x## and a smooth function ##f##. I can then compute ## (\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}) ## and ## (\frac{\partial f}{\partial x}, \frac{\partial f}{\partial u}) ##. But the two objects ## \frac{\partial f}{\partial x} ## are in fact entirely different functions : ## \left. \frac{\partial f}{\partial x}\right|_y ## and ## \left. \frac{\partial f}{\partial x}\right|_u ##. The fact that derivation along a single coordinate depends on the entire coordinate system would really deserve to be insisted upon.
 
Nice article, though I can't follow the section on derivatives as I haven't reached calculus yet. At a much simpler level (which is where I'm at as an older adult/amateur learner revisiting high school math), I sometimes invent "temporary variables" just for purposes of calculating; e.g. there was a homework question recently about a word problem in basic algebra that stated, among other things, "##d## is ##k## percent less than ##c##". Solving it myself for fun, rather than work directly with ##d = (1-k)c##, I made a temporary variable ##k' = 1-k## so I could get rid of the parens and just say ##d = k'c##, postponing the subtraction until after everything else was done. But that's just me working on my own; I have no idea if "temporary variables" are used by other people.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
105
Views
13K
Replies
8
Views
3K
Replies
13
Views
2K
Replies
5
Views
2K
Replies
26
Views
4K
Replies
12
Views
3K
Replies
2
Views
2K
Replies
7
Views
2K
Replies
5
Views
2K
Back
Top