Confined Volume Calculation: How to Determine the Volume Within a Given Surface?

  • Thread starter Thread starter supercali
  • Start date Start date
  • Tags Tags
    Volume
supercali
Messages
53
Reaction score
0

Homework Statement


calculate the volume confined within this surface
<br /> \left( x+y+z \right) ^{2}+ \left( 2\,x+y+z \right) ^{2}+ \left( 3\,x+<br /> 4\,y+z \right) ^{2}=4<br />

Homework Equations





The Attempt at a Solution


i know that i need to use different variables but i just can't make it
 
Physics news on Phys.org
What choice of coordinates will turn that into a sphere u^2+v^2+w^2=4??
 
Dick said:
What choice of coordinates will turn that into a sphere u^2+v^2+w^2=4??

even if i do choose
u=x+y+z
v=2x+y+z
w=3x+4y+z

which jacobian will i use?
because i need to use another transformation to spheerical coord...
 
Last edited:
never mind got iy thanks allot for the hint
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top