I Conflict of domain and endpoints in Noether's theorem

AI Thread Summary
The discussion centers on the complexities of endpoint definitions in Noether's theorem and energy conservation derivations. A transformation from q(t) to q'(t) raises questions about the integration of the Lagrangian due to fuzzy endpoint definitions. The correctness of boundary conditions, as stated by Schwichtenberg and Kleinert, is debated, particularly regarding whether variations at the endpoints can be zero. Kleinert's differentiation between variations in Hamilton's principle and Noether's theorem is also questioned, especially the implications of boundary conditions. The conversation emphasizes the necessity of expressing variables in "old coordinates" to clarify these issues and maintain appropriate boundary conditions.
Van Ladmon
Messages
8
Reaction score
0
TL;DR Summary
Conflicts arise on boundary when proving energy conservation using Noether's theorem. Different statement appear in Physics from Symmetry and Kleinert's Particles and Quantum Fields.
In the derivation of energy conservation, there is the transformation ##q(t)\rightarrow q'(t)=q(t+\epsilon)##, whose end points are kind of fuzzy. The original path ##q(t)## is only defined from ##t_1## to ##t_2##. If this transformation rule is imposed, ##q'(t_2-\epsilon)=q(t_2)## to ##q'(t_2)=q(t_2+\epsilon)## is not defined in the original path. Then how could the Lagrangian be integrated?

On P.98 of Jakob Schwichtenberg's book Physics from Symmetry, he stated that ##\delta q(t_1)=\delta q(t_2)=0## whereas Kleinert stated in his Particles and Quantum Fields ##\delta q_s(t_a)## and ##\delta q_s(t_b)## are not necessarily ##0##. Who's correct?

This question is different from the endpoint questions since it is already clear that ##q(t_2+\epsilon)\neq q(t_2)##.
 
Last edited by a moderator:
Physics news on Phys.org
You have to express everything in terms of the "old coordinates" including time. Then there's no problem with imposing the appropriate boundary conditions ##\delta q(t_1)=\delta q(t_2)=0## for Hamilton's principle. For time translations the symmetry condition is ##\partial_t L=0##, i.e., ##L=L(q,\dot{q})## and the conserved quantity is ##H=p \cdot q-L## with ##p=\partial L/\partial \dot{q}##.
 
vanhees71 said:
You have to express everything in terms of the "old coordinates" including time. Then there's no problem with imposing the appropriate boundary conditions ##\delta q(t_1)=\delta q(t_2)=0## for Hamilton's principle. For time translations the symmetry condition is ##\partial_t L=0##, i.e., ##L=L(q,\dot{q})## and the conserved quantity is ##H=p \cdot q-L## with ##p=\partial L/\partial \dot{q}##.
But why Kleinert differentiates the two kinds of variations: ##\delta q## used in Hamilton's principle and ##\delta_s q## in Noether's theorem? He says that ##\delta_s q## need not be ##0## on the boundaries. Also, what do you mean by expressing everything in terms of "old coordinates"? Could you please give an example? Thanks.
 
Thread 'Question about pressure of a liquid'
I am looking at pressure in liquids and I am testing my idea. The vertical tube is 100m, the contraption is filled with water. The vertical tube is very thin(maybe 1mm^2 cross section). The area of the base is ~100m^2. Will he top half be launched in the air if suddenly it cracked?- assuming its light enough. I want to test my idea that if I had a thin long ruber tube that I lifted up, then the pressure at "red lines" will be high and that the $force = pressure * area$ would be massive...
I feel it should be solvable we just need to find a perfect pattern, and there will be a general pattern since the forces acting are based on a single function, so..... you can't actually say it is unsolvable right? Cause imaging 3 bodies actually existed somwhere in this universe then nature isn't gonna wait till we predict it! And yea I have checked in many places that tiny changes cause large changes so it becomes chaos........ but still I just can't accept that it is impossible to solve...
Hello! I am generating electrons from a 3D gaussian source. The electrons all have the same energy, but the direction is isotropic. The electron source is in between 2 plates that act as a capacitor, and one of them acts as a time of flight (tof) detector. I know the voltage on the plates very well, and I want to extract the center of the gaussian distribution (in one direction only), by measuring the tof of many electrons. So the uncertainty on the position is given by the tof uncertainty...
Back
Top