Conflicting statements from two topology textbooks

mathboy
Messages
182
Reaction score
0
Conflicting statements from topology textbooks

Definitions: A point p is a limit point of A iff all open sets containing p intersects A-{p}. Let A' denote the set of all limit points of A. So far, so good.

Cullen's topology book (1968) states that
(A U B)' = A' U B'.
I read her proof carefully and it looks good. Schaum's topology book (1965) also states the same thing and its proof also looks good.

However, a university pdf solution to Munkres' problems (1st edition, p.100 #8d) states that (A U B)' = A' U B' is false. I read the discussion of the incorrect logic that is easily made in arriving at the "false conclusion." But Cullen's and Schaum's proofs don't use that incorrect logic, but they prove it differently.

I'm so confused. Is it true or false?

While we're at it. Is (A n B)' = A' n B' true? And what about infinite unions and infinite intersections? Oddly, I also haven't seen either statement in the form of a theorem (or a question asking for a proof) in any recent topology textbook.
 
Last edited:
Mathematics news on Phys.org
Ok, I found a counterexample to the infinite union case: A_n = (1/n, 1-1/n), n=1,2,3..., and to the infinite intersection case: A_n = (-1/n, 1/n), n=1,2,3...

If the statement: A c B implies A' c B' is true (this is true, right?), then I have found that
1) U(A') c (UA)'
2) (A n B)' c A' n B' (I found a counterexample where equality does not hold)

The finite union case gives equality IF (A U B)' = A' U B' is true.
 
Last edited:
I'm pretty sure (A U B)' = A' U B' is true. Everything else you said is fine, too.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top