A bit more to the points is, I think, the idea of "infraparticles" in QED, i.e., to use the "true asymptotic free states" rather than naive "plane waves". The point is that in QED the photon is massless, and the asymptotic free states are in fact not plane waves due to the long-rangedness of the em. interaction (aka the masslessness of the photon). That solves the IR problems in a physical way. A very pedagogic paper about this is
P. Kulish and L. Faddeev, Asymptotic conditions and infrared
divergences in quantum electrodynamics, Theor. Math. Phys.
4, 745 (1970),
https://doi.org/10.1007/BF01066485
or the series of papers by Kibble
T. W. B. Kibble, Coherent Soft-Photon States and Infrared
Divergences. I. Classical Currents, Jour. Math. Phys. 9, 315
(1968),
https://doi.org/10.1063/1.1664582
T. W. B. Kibble, Coherent Soft-Photon States and Infrared
Divergences. II. Mass-Shell Singularities of Green’s Functions,
Phys. Rev. 173, 1527 (1968),
https://doi.org/10.1103/PhysRev.173.1527.
Kibble:1969ep[Kib68b]T. W. B. Kibble, Coherent Soft-Photon States and Infrared
Divergences. III. Asymptotic States and Reduction Formulas,
Phys. Rev. 174, 1882 (1968),
https://doi.org/10.1103/PhysRev.174.1882.
Kibble:1969kd [Kib68c] T. W. B. Kibble, Coherent Soft-Photon States and Infrared
Divergences. IV. The Scattering Operator, Phys. Rev. 175,
1624 (1968),
https://doi.org/10.1103/PhysRev.175.1624.