Confusion about whether to use the specific heat of water or ice

AI Thread Summary
The discussion revolves around the confusion between using the specific heat of ice versus water in heat transfer calculations. It clarifies that when ice melts, it first reaches 0°C before becoming water, which is why the specific heat of ice (2100 J/kg°C) is used in some calculations. In contrast, when considering the heat transfer after the ice has melted, only the specific heat of water (4190 J/kg°C) is relevant. The participants confirm that Chegg's approach is correct, as it reflects the necessary steps of heating the ice before melting it. Understanding the phases of the substances involved is crucial for accurate thermal equilibrium calculations.
bluesteels
Messages
28
Reaction score
1
Homework Statement
A copper calorimeter can with mass 0.100 kg contains 0.160 kg of water and 0.0180 kg of ice in thermal equilibrium at atmospheric pressure. If 0.750 kg of lead at 255°C is dropped into the calorimeter can, what is the final temperature? Assume that no heat is lost to the surroundings?"
Relevant Equations
Q=mc delta T
Q=mL (latent heat)
My thought process of how i do the ice melting part: (note I just ignore the copper/lead part cause I already know how to do that part)

Q_ice + Q_melt + Q_liquid so, it 0.018(2100)T+0.16(4190)T+0.018(334*10^3)

but on chegg they didn't use 2100 but they just use 4190 instead and I am confused on why they did that.

Like i know it because ice melting into water but if that the case how come this problem below they don't even use it

"In a container of negligible mass, 0.200 kg of ice at an initial temperature of -40.0°C is mixed with a mass m of water that has an initial temperature of 80.0°C. No heat is lost to the surroundings. If the final temperature of the system is 28.0°C, what is the mass m of the water that was initially at 80.0°C?"

For this problem they did

0.2(2100)(40)+0.2(334*10^3)+0.2(4190)(80). if that was the case earlier then wouldn't you sub. 2100 for 4190 for this problem.
 
Physics news on Phys.org
Ice melts at 0 degrees Celsius.
 
What is the initial temperature of the system ? (reasonably obvious : it's "in thermal equilibrium")
 
Assuming that the final temperature is high enough for all the ice to melt, the amount of heat (in Joules) that was transferred to the part that was initially ice was $$Q_I=0.18(0-0)+0.18(334000)+0.18(4190)(T-0)$$And the amount of heat that was transferred to the part that was initially water was $$Q_W=0.16(4100)(T-0)$$where 0C was the initial temperature of the water-ice bath.
 
bluesteels said:
My thought process of how i do the ice melting part: (note I just ignore the copper/lead part cause I already know how to do that part)

Q_ice + Q_melt + Q_liquid so, it 0.018(2100)T+0.16(4190)T+0.018(334*10^3)

but on chegg they didn't use 2100 but they just use 4190 instead and I am confused on why they did that.

Like i know it because ice melting into water but if that the case how come this problem below they don't even use it
For this problem, you are not heating-up any ice. You are:
- melting 0.0180kg of ice at 0ºC so it becomes water;
- then heating 0.160kg and 0.0180kg of water from 0ºC to TºC.

Chegg is correct

bluesteels said:
For this [second] problem they did

0.2(2100)(40)+0.2(334*10^3)+0.2(4190)(80). if that was the case earlier then wouldn't you sub. 2100 for 4190 for this problem.
In the second question, part of the process is to heat 0.20kg of ice from -40ºC to 0ºC (before it can melt). That’s why the answer contains “0.2(2100)(40) “.
 
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
TL;DR Summary: Find Electric field due to charges between 2 parallel infinite planes using Gauss law at any point Here's the diagram. We have a uniform p (rho) density of charges between 2 infinite planes in the cartesian coordinates system. I used a cube of thickness a that spans from z=-a/2 to z=a/2 as a Gaussian surface, each side of the cube has area A. I know that the field depends only on z since there is translational invariance in x and y directions because the planes are...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...

Similar threads

Back
Top