Confusion in using the continuity equation here

AI Thread Summary
Assuming "Properties in the tank are uniform, but time-dependent" leads to the validity of (DmDt)sys=0 because the mass of the system remains invariant over time, despite changes in the control volume. The system encompasses all matter inside, entering, or exiting the control volume, while the mass within the control volume changes as time progresses. The first integral represents the instantaneous mass in the control volume, and the second integral accounts for mass flow out of the container. This distinction clarifies that the perceived change in mass does not contradict the continuity equation. Understanding these concepts is crucial for correctly applying the continuity equation in fluid dynamics.
tracker890 Source h
Messages
90
Reaction score
11
Homework Statement
I feel that the mass within the system changes over time, but this perception contradicts the solution.
Relevant Equations
continuity equation
Q: Why does assuming "Properties in the tank are uniform, but time-dependent" lead to the validity of
(DmDt)sys=0? Doesn't the mass within the system change over time?
reference.
1700656597283.png
 
Physics news on Phys.org
tracker890 Source h said:
Homework Statement: I feel that the mass within the system changes over time, but this perception contradicts the solution.
Relevant Equations: continuity equation

Q: Why does assuming "Properties in the tank are uniform, but time-dependent" lead to the validity of
(DmDt)sys=0? Doesn't the mass within the system change over time?
reference.
View attachment 335945
The mass of the system is the total mass, i.e. what’s inside and what’s outside the control volume at a particular time. It is invariant (at least in classical physics?). at ##t=0## all of the system is inside the control volume, as time progresses some portion of the system is outside. That ∫ on the left (unsteady) represents what portion of the system is inside (only) the control volume at a particular time.

Summarizing: The system is not the control volume. The system is the stuff (matter) inside the control volume, on its way into the control volume, or what has left the control volume.
 
Last edited:
  • Like
Likes tracker890 Source h and TSny
To add a little to @erobz, the first integral ##\int_{\small CV}\rho dV## is the instantaneous mass within the control volume. This mass changes with time. So, ##\frac{\partial}{\partial t}\int_{\small CV}\rho dV## represents the rate of change of mass within the tank. The second integral represents the rate at which mass is flowing out through the neck of the container.
 
  • Like
Likes tracker890 Source h, Chestermiller and erobz
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
TL;DR Summary: Find Electric field due to charges between 2 parallel infinite planes using Gauss law at any point Here's the diagram. We have a uniform p (rho) density of charges between 2 infinite planes in the cartesian coordinates system. I used a cube of thickness a that spans from z=-a/2 to z=a/2 as a Gaussian surface, each side of the cube has area A. I know that the field depends only on z since there is translational invariance in x and y directions because the planes are...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Back
Top