However, it's easy to prove that {v, &, ~, -->, <-->} is a complete set of connectives. You start with the definition of a formula. I'll state it here, as best I remember it: if P is an atomic statement, then P is a formula. If R is a formula, then ~R is a formula. If R and S are formulas, then (R v S) is a formula, (R & S) is a formula, (R --> S) is a formula, and (R <--> S) is a formula, and anything that cannot be said to be a formula by these implications is not a formula. Call the set of all formulas F.
Now, given the set of connectives {v, &, ~, -->, <-->}, any atomic statement P can be built. If R can be built, then ~R can be built. If R and S can be built, then (R v S) can be built, (R & S) can be built, (R --> S) can be built, and (R <--> S) can be built, and anything that cannot be built by these implications cannot be built. Call the set of all formulas that can be built with {v, &, ~, -->, <-->} B. So B = F, so F is a subset of B, so any formula can be built with {v, &, ~, -->, <-->}, so {v, &, ~, -->, <-->} is a complete set of connectives.