Conservation of Energy when lifting a box up off the floor

Click For Summary

Homework Help Overview

The discussion revolves around the conservation of energy in the context of lifting a box off the floor using a force greater than its weight. The original poster struggles to formulate a correct conservation of energy statement, particularly in relation to the work done by the applied force and the gravitational force acting on the box.

Discussion Character

  • Conceptual clarification, Mathematical reasoning, Assumption checking

Approaches and Questions Raised

  • The original poster attempts to equate the work done by the net force to the kinetic and potential energy of the box but finds inconsistencies in their reasoning. Some participants suggest reviewing the work-energy theorem and the roles of different forces acting on the box.

Discussion Status

Participants are exploring various interpretations of the work-energy theorem and its application to the problem. Some have provided guidance on how to approach the problem, emphasizing the distinction between work done by different forces and the implications for energy conservation.

Contextual Notes

There appears to be confusion regarding the conservation of mechanical energy in this scenario, as the discussion highlights that energy is not conserved due to the presence of an external force acting on the system.

nav888
Messages
38
Reaction score
2
Homework Statement
Writing a conservation of energy statement
Relevant Equations
W = mgh
E = 1/2 mv^2
So, I cannot for the life of me write a conservation of energy statement, when an object is lifted up by a force. So in my example there is a box on the floor with v = 0, and then a force of magnitude F, where F > mg, acts on the ball, now the net force is F-mg, and hence the work done is (F - mg) h where h is the vertical height, Now I thought that the work done is equal to the energy of the ball, and hence (F - mg) h = 1/2mv^2 + mgh.
But this isnt correct, could someone please help explain?

Many thanks
 
Physics news on Phys.org
Please read your post and correct ...
 
BvU said:
Please read your post and correct ...
? I have come here for help I cannot correct my work or I would not ask for help? Sorry
 
@nav888 I hope I understood your problem correctly.
##W_{total}=\Delta K=\frac 1 2 m(v^2_f-v^2_i)##
In your example ##v_i=0## so the total work is : ##W_{total}=\frac 1 2 mv^2_f##
nav888 said:
(F - mg) h = 1/2mv^2 + mgh.
If there is no air resistance and only these 2 forces are acting on the object you can calculate total work easily:
##W_{total}=F_{net}dcos\theta=(F-mg)h=\frac 1 2 mv^2_f##

Your answer has an extra mgh:
(F - mg) h = 1/2mv^2 + mgh.

Edit: Note that The work-energy theorem states that the total work done on an object equals the change in its kinetic energy.
 
What you need is the work-energy theorem because mechanical energy (kinetic plus potential) is not conserved. The work-energy theorem says that the sum of the works done by all the forces is equal to the change in kinetic energy. If (constant) external force ##F## lifts the mass to height ##h## from rest, there are two forces doing work on the mass, gravity and ##F##. So you write
##W_g=-mgh## (negative work because the displacement and the force are in opposite directions)
##W_F=Fh## (positive work because the displacement and the force are in the same direction)
##W_{total}=W_g+W_F=Fh-mgh##
Thus, by the work-energy theorem $$\Delta K = \frac{1}{2}mv^2=Fh-mgh.$$Now the change in potential energy is ##\Delta U = mgh.## If you move that to the other side of the equation and change sign, you get $$\Delta K+\Delta U=Fh.$$ The above equation says that the sum of the changes in kinetic plus potential energy changes, as the mass is lifted, is not constant. If mechanical energy were conserved, then the sum of the two changes must be zero.

So you cannot, for the life of you, write an energy conservation equation simply because you chose a situation where energy is not conserved.
 
Last edited:
  • Like
Likes   Reactions: MatinSAR
Another way of looking at it:
Posts #4 and #5 correctly analyse it in terms of the work done on the mass.
Alternatively, consider the work done by the force on the mass/Earth system. The gained potential energy is internal energy of that system:
##Fh=\frac 12mv^2+mgh##.
So your error can be thought of as mixing up the two views.
 
  • Like
Likes   Reactions: MatinSAR

Similar threads

  • · Replies 7 ·
Replies
7
Views
1K
Replies
4
Views
1K
Replies
2
Views
1K
  • · Replies 58 ·
2
Replies
58
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
Replies
7
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
55
Views
6K