Constant acceleration and brakes

AI Thread Summary
The discussion centers on solving a physics problem involving constant acceleration and braking while approaching a red traffic light. The initial speed is 20 m/s, and the driver is 110 m from the intersection, applying brakes after a reaction time of 0.5 seconds, leaving 100 m to stop. To determine the necessary acceleration to stop at the intersection, the equation v^2 = u^2 + 2as is recommended, where the final velocity (v) is 0. The time taken to stop can be calculated using the formula v = u + at, utilizing the acceleration found in the previous step. This approach provides a clear method to find the required values for the braking scenario.
elizabethR
Messages
8
Reaction score
0
how would i do this problem...

You are driving to the grocery store at 20 m/s. You are 110 m from an intersection when the traffic light turns red. Assume that your reaction time is 0.50 s and that your car brakes with constant acceleration.

1)How far are you from the intersection when you begin to apply the brakes? I know this answer: 100m.
...i can't figure out the next two. please help me figure out the formula for this!
2)What acceleration will bring you to rest right at the intersection?
3)How long does it take you to stop?
 
Physics news on Phys.org
Since your acceleration is constant, you can use this equation:

v^2 = u^2 + 2as

Where v is your final velocity which is 0, u intial velocity, a is acceleration and s displacement.

For the 3rd part, use v = u + at where t is time taken. The value for a is the one you've found for the 2nd part.

Should give you all the answers. :)
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top