Constant acceleration physics problem

AI Thread Summary
The discussion revolves around a physics problem involving a car traveling under constant acceleration, where the car covers 64 meters between 8 and 12 seconds. The user initially calculates an average velocity of 16 m/s but struggles to determine the acceleration due to the lack of initial distance data. Responses suggest using the equations of motion to form two equations with two unknowns (initial velocity and acceleration) based on the given time intervals. It is advised to assume the initial velocity at the start of the observation period is zero, simplifying the calculations. The conversation emphasizes the importance of understanding the relationships between distance, time, and acceleration in constant acceleration scenarios.
Gadget
Messages
5
Reaction score
0
Ok I have a question for everyone. Please help! I was given a graph with the problem, but I am going to try to put it in words. In the X-axis there is seconds. In the Y-axis there is meters. From 8 sec - 12 sec the car traveled 64 meters. The distance before the 64 meters is not given. It also states that the car is traveling under constant acceleration. Question is, what is the acceleration. I tried to solve it by first getting a velocity, 64 meters / 4 sec = 16 m/s, I used v= v_o + a t to get acceleration, a = 4 m/s^2, then I tried to use x = x_o + v_o t + 1/2 a t^2, but I realized that I can't use the v_o as zero because I am only taking the 4 sec not the entire 12 sec. What is it that I need to do. Find the velocity at 8 sec? How do you do that if a distance wasn't given to me?
Thank You
 
Physics news on Phys.org
Gadget said:
Ok I have a question for everyone. Please help! I was given a graph with the problem, but I am going to try to put it in words. In the X-axis there is seconds. In the Y-axis there is meters. From 8 sec - 12 sec the car traveled 64 meters. The distance before the 64 meters is not given. It also states that the car is traveling under constant acceleration. Question is, what is the acceleration. I tried to solve it by first getting a velocity, 64 meters / 4 sec = 16 m/s, I used v= v_o + a t to get acceleration, a = 4 m/s^2, then I tried to use x = x_o + v_o t + 1/2 a t^2, but I realized that I can't use the v_o as zero because I am only taking the 4 sec not the entire 12 sec. What is it that I need to do. Find the velocity at 8 sec? How do you do that if a distance wasn't given to me?
Thank You
you're correct that under constant acceleration (a), the x position is given by:

x \ = \ x_{0} + v_{0} \Delta t + \frac{a ( \Delta t )^{2}}{2}

or:

\left ( x - x_{0} \right ) \ = \ v_{0} \Delta t + \frac{a \left ( \Delta t \right )^{2}}{2}

where Δt is the elapsed time from when the car was at initial position x0 to when it's at current position "x", and v0 is the car's (unknown) velocity when it was at initial position x0.

let x0 be the car position at time t0=8 sec. Then let x1 be the car position at time t1=10 sec, and let x2 be the car position at time t2=12 sec. Then you can form 2 equations in 2 unknowns (v0 and a) and solve for (a):

( x_{1} - x_{0} ) \ = \ v_{0} ( t_{1} - t_{0} ) + \frac{a ( t_{1} - t_{0} )^{2}}{2}

( x_{2} - x_{0} ) \ = \ v_{0} ( t_{2} - t_{0} ) + \frac{a ( t_{2} - t_{0} )^{2}}{2}

where:

(t1 - t0) = 10 - 8 = 2 sec
(x1 - x0) = Read From Graph
(t2 - t0) = 12 - 8 = 4 sec
(x2 - x0) = Read From Graph (= 64 meters which u already know)

SOLVE for (a) by placing these values in the above 2 equations and eliminating v0.
 
Last edited:
geosonel said:
... (x1 - x0) = Read From Graph ...
I wonder if you could read this from graph... :rolleyes:
Another hint if you like : You should assume at the time t_0 = 0, the car starts to go. That means at t_0 = 0s, v_0 = 0 m/s.
v = v_0 + at = at as v_0 = 0 \mbox{m / s}
so at t = 8 seconds v_8 = 8a.
Can you find the distance the car goes between t = 8 and t = 12 with respect to a? From there, you can easily solve the problem.
Hope you get it.
Viet Dao,
 
Last edited:
If you can get slop of the tangent at t = 8 second that will be velocity at that time.
 
Gadget said:
Ok I have a question for everyone. Please help! I was given a graph with the problem, but I am going to try to put it in words. In the X-axis there is seconds. In the Y-axis there is meters. From 8 sec - 12 sec the car traveled 64 meters. The distance before the 64 meters is not given. It also states that the car is traveling under constant acceleration. Question is, what is the acceleration. I tried to solve it by first getting a velocity, 64 meters / 4 sec = 16 m/s, I used v= v_o + a t to get acceleration, a = 4 m/s^2, then I tried to use x = x_o + v_o t + 1/2 a t^2, but I realized that I can't use the v_o as zero because I am only taking the 4 sec not the entire 12 sec. What is it that I need to do. Find the velocity at 8 sec? How do you do that if a distance wasn't given to me?
Thank You
Gadget, i know your question has been answered but nevertheless i would like to point your attention to this intro on Newtonian Physics. Perhaps it might be of some interest to you in the near future :smile: .
Newtonian Mechanics Intro

regards
marlon
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top