Constructing a Bounded Closed set

snipez90
Messages
1,095
Reaction score
5

Homework Statement


i) Construct a bounded closed subset of R (reals) with exactly three limit points
ii) Construct a bounded closed set E contained in R for which E' (set of limit points of E) is a countable set.


Homework Equations


Definition of limit point used: Let A be a subset of metric space X. Then b is a limit point of A if every neighborhood of b contains a point A different from b.



The Attempt at a Solution


All right so this seems pretty easy if you do it the lame way like I did. For i), you could just take the set containing 0 and 1/n for all natural numbers n, and this obviously has 0 as its only limit point. Have two other sets say, 1 with 1 + 1/n and 2009 with 2009 - 1/n. Clearly we have boundedness. Closed follows from intersection of sets which each contain their limit points.

It seems like we can extend the idea in i) to ii) as well (correct me if I'm wrong). However, is there a nicer way to construct these two sets?
 
Physics news on Phys.org
I think your 'lame' way is actually pretty nice.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top