- #1
TheoEndre
- 42
- 3
Hi,
I hope you guys help me with this exercise in the book "Linear Algebra Done Right"
" Give an example of a nonempty subset ##U## of ##R^2## such that ##U## is closed under addition and under taking additive inverses (meaning ##−u## ##∈## ##U## whenever ##u## ##∈## ##U##), but ##U## is not a subspace of ##R^2##."
3. The Attempt at a Solution [/B]
From what I understood from the question, the subset must not be closed under multiplication because it is closed under addition as well as the additive inverses which imply that ##0## vector must exist.
So the only thing that would make it non-subspace is the multiplication.
Hope you guys correct my understanding and help me with the solution.
I hope you guys help me with this exercise in the book "Linear Algebra Done Right"
Homework Statement
" Give an example of a nonempty subset ##U## of ##R^2## such that ##U## is closed under addition and under taking additive inverses (meaning ##−u## ##∈## ##U## whenever ##u## ##∈## ##U##), but ##U## is not a subspace of ##R^2##."
Homework Equations
3. The Attempt at a Solution [/B]
From what I understood from the question, the subset must not be closed under multiplication because it is closed under addition as well as the additive inverses which imply that ##0## vector must exist.
So the only thing that would make it non-subspace is the multiplication.
Hope you guys correct my understanding and help me with the solution.