SpatialVacancy
- 24
- 0
Constructing Proofs help!
Here is the problem:
Given a set S and subset A, the characteristic function of A, denoted \chi_A, is the function defined from S to \mathbb{Z} with the property that for all u \ \epsilon \ S:
<br /> \chi_A(u)=<br /> \begin{cases}<br /> 1 & \text{if u $ \epsilon \ A$} \\<br /> 0 & \text{if u $ is not \ \epsilon \ A$}<br /> \end{cases}<br />
Show that each of the following holds for all subsets A and B of S and all u \ \epsilon \ S.
a. \chi_{A \cap B}(u)= \chi_A (u) \cdot \chi_B (u)
b. \chi_{A \cup B}(u)= \chi_A (u) + \chi_B (u) - \chi_A (u) \cdot \chi_B (u)
I have NO IDEA what this problem is asking...can someone please help!
Here is the problem:
Given a set S and subset A, the characteristic function of A, denoted \chi_A, is the function defined from S to \mathbb{Z} with the property that for all u \ \epsilon \ S:
<br /> \chi_A(u)=<br /> \begin{cases}<br /> 1 & \text{if u $ \epsilon \ A$} \\<br /> 0 & \text{if u $ is not \ \epsilon \ A$}<br /> \end{cases}<br />
Show that each of the following holds for all subsets A and B of S and all u \ \epsilon \ S.
a. \chi_{A \cap B}(u)= \chi_A (u) \cdot \chi_B (u)
b. \chi_{A \cup B}(u)= \chi_A (u) + \chi_B (u) - \chi_A (u) \cdot \chi_B (u)
I have NO IDEA what this problem is asking...can someone please help!