bobby2k
- 126
- 2
Hi
Lets say that f(x) is continuous. Then \int_0^x \! f(t)dt=G(x) is continuous. (I don't think you have to say that f need to be continuous for this, all we need to say is that f is integrable?, or do we need continuity of f here?)
But my main question is about the converse. let's say that \int_0^x \! f(t)dt=G(x) is continuous, does that imply that f is continuous?
Have a nice sunday.
Lets say that f(x) is continuous. Then \int_0^x \! f(t)dt=G(x) is continuous. (I don't think you have to say that f need to be continuous for this, all we need to say is that f is integrable?, or do we need continuity of f here?)
But my main question is about the converse. let's say that \int_0^x \! f(t)dt=G(x) is continuous, does that imply that f is continuous?
Have a nice sunday.
Last edited: