Continuous function sends closed sets on closed sets

buddyholly9999
Messages
74
Reaction score
0
Let f: D \rightarrow \mathbb{R} be continuous.

Is there an easier function that counterexamples;
if D is closed, then f(D) is closed
than D={2n pi + 1/n: n in N}, f(x)=sin(x) ?


Plus, these counterexamples are very similar ...but are they correct?

If D is not closed, then f(D) is not closed.
CE: D = (0, 1) and f(x) = 5
If D is not compact, then f(D) is not compact.
CE: We use same CE as above
If D is infinite, then f(D) is infinite.
CE: D = all real numbers and f(x) = 5
If D is an interval, then f(D) is an interval
CE: Use same CE as first
 
Last edited:
Physics news on Phys.org
Don't double post.
 
Couldn't figure out how to delete these mofo's...so anything to add to my question...?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top