Solving Contour Integration Homework

  • Thread starter Thread starter claralou_
  • Start date Start date
  • Tags Tags
    Integration
Click For Summary
The discussion centers on evaluating the contour integral of the function f(z) = 1/sin²(z) over a circular path ΓR and determining the conditions for continuity on this path. Participants identify that the function has poles at points where sin(z) equals zero, specifically at z = kπ for integers k. There is confusion regarding the calculation of residues and the correct identification of poles, with suggestions to avoid using exponential forms. The importance of accurately determining singularities and applying the residue theorem is emphasized as essential for solving the integral. Overall, the conversation highlights the complexities involved in contour integration and the need for clarity in mathematical expressions.
claralou_
Messages
5
Reaction score
0

Homework Statement


For R > 0,
assume ΓR is a circle {z ∈ C : |z| = R} with anticlockwise direction.
For which R>0, does the the function f(z) = 1/sin^(2)(z) be continuous on ΓR
and evaluate ∫_{ΓR} dz/sin^(2)(z) for each R (the answer may be dependent on R).

Homework Equations


sinx= (e^(ix) - e^(-ix)) / 2i (possibly)
Resf(z)= lim (pole x f(z))

The Attempt at a Solution


used 1/e^(iz) = sin(x)
so found
1/sin^{2}x = 1 / (e^{2iz}

Began using the

closed integral over C of f(z)dz = Integral from -R to +R of f(x)dx + integral f(z) dz

Found that there was a pole at z = 1/2i and found the residue at that point to be 1/(2ie)
 
Physics news on Phys.org
The way you use x and z as the same thing (?) is confusing.

Your first equation in part 3 is wrong. If it would be right there wouldn’t be any pole (and it would imply the sine has no zeros). It would also mean the sine is just the exponential function rotated in the complex plane. It is not.

I don’t understand the pole you calculated, it is not a pole of the original function and not a pole of the other one.
 
mfb said:
The way you use x and z as the same thing (?) is confusing.

Your first equation in part 3 is wrong. If it would be right there wouldn’t be any pole (and it would imply the sine has no zeros). It would also mean the sine is just the exponential function rotated in the complex plane. It is not.

I don’t understand the pole you calculated, it is not a pole of the original function and not a pole of the other one.

I tried following a method I found on a website for contour integration. Feel this is where I have gone wrong.
Should I be using the first equation in part 2?
 
claralou_ said:
Should I be using the first equation in part 2?
That will work.
Alternatively, find the zeros first without using any exponentials.
 
mfb said:
That will work.
Alternatively, find the zeros first without using any exponentials.

Do you mean to find where 1/sin^2(x) would be zero?
 
claralou_ said:
Do you mean to find where 1/sin^2(x) would be zero?
No, obviouslsy not! You want points where ##1/ \sin^2(z)## is singular. What are the only points where a ratio gives singular results?
 
Ray Vickson said:
No, obviouslsy not! You want points where ##1/ \sin^2(z)## is singular. What are the only points where a ratio gives singular results?

I thought the isolated singularities were when the bottom line can equal 0 ie where f in this case would have poles of pi*k for some k in the complex numbers?
 
claralou_ said:
I thought the isolated singularities were when the bottom line can equal 0 ie where f in this case would have poles of pi*k for some k in the complex numbers?

You are getting close, but those are not the points where ##1/\sin(z) = 0##, which is what you said!

Also, you need more details: exactly what values of ##k \in C## should you use?
 
Ray Vickson said:
You are getting close, but those are not the points where ##1/\sin(z) = 0##, which is what you said!

Also, you need more details: exactly what values of ##k \in C## should you use?

I meant k in integers sorry! Following an alternative method I've learnt, if i just sub in sin^(z) as (z - 1/z) / (2i) and multiply it out I get z^2 over (z^4 - 2z^2 +1).
After solving I found z^2 to be equal to plus/minus 1 so could z be equal to plus/minus i?
V grateful your help!
 
  • #10
claralou_ said:
I meant k in integers sorry! Following an alternative method I've learnt, if i just sub in sin^(z) as (z - 1/z) / (2i) and multiply it out I get z^2 over (z^4 - 2z^2 +1).
After solving I found z^2 to be equal to plus/minus 1 so could z be equal to plus/minus i?
V grateful your help!
I have absolutely no idea what you are trying to do or say. You have a function ##f(z) = 1/\sin^2(z)## with known poles in ##C##.

You can compute the residues of ##f## at these poles, then use the residue theorem to finish the job.

That's all there is to it!
 
  • #11
claralou_ said:
sin^(z) as (z - 1/z) / (2i)
These two things are not the same. There are some exponentials missing.
 

Similar threads

  • · Replies 9 ·
Replies
9
Views
2K
Replies
13
Views
2K
Replies
1
Views
1K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 26 ·
Replies
26
Views
5K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
9
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K