Contra-Variant Vector Transform: Taking Partials

  • Thread starter Thread starter exmarine
  • Start date Start date
  • Tags Tags
    Vector
exmarine
Messages
241
Reaction score
11
The contra-variant transform seems to be defined by the differential transform from calculus.

dx^{\mu}=x^{\mu}_{,\nu}dx^{\nu}

A^{\mu}=x^{\mu}_{,\nu}A^{\nu}

I am puzzled by this, as the vector / tensor usually has finite components. They span a considerable region of space. So where are the partials to be taken, i.e., at what point in space or space-time?
 
Physics news on Phys.org
Those are NOT "vectors" or "tensors"- they are tensor or vector valued functions. That is they are functions that assign a tensor or vector to every point in space-time. Just as you do not take derivtives of numbers, but of functions, so the derivative is a function that can be evaluated at any point in space-time.
 
In Philippe G. Ciarlet's book 'An introduction to differential geometry', He gives the integrability conditions of the differential equations like this: $$ \partial_{i} F_{lj}=L^p_{ij} F_{lp},\,\,\,F_{ij}(x_0)=F^0_{ij}. $$ The integrability conditions for the existence of a global solution ##F_{lj}## is: $$ R^i_{jkl}\equiv\partial_k L^i_{jl}-\partial_l L^i_{jk}+L^h_{jl} L^i_{hk}-L^h_{jk} L^i_{hl}=0 $$ Then from the equation: $$\nabla_b e_a= \Gamma^c_{ab} e_c$$ Using cartesian basis ## e_I...
Abstract The gravitational-wave signal GW250114 was observed by the two LIGO detectors with a network matched-filter signal-to-noise ratio of 80. The signal was emitted by the coalescence of two black holes with near-equal masses ## m_1=33.6_{-0.8}^{+1.2} M_{⊙} ## and ## m_2=32.2_{-1. 3}^{+0.8} M_{⊙}##, and small spins ##\chi_{1,2}\leq 0.26 ## (90% credibility) and negligible eccentricity ##e⁢\leq 0.03.## Postmerger data excluding the peak region are consistent with the dominant quadrupolar...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. The Relativator was sold by (as printed) Atomic Laboratories, Inc. 3086 Claremont Ave, Berkeley 5, California , which seems to be a division of Cenco Instruments (Central Scientific Company)... Source: https://www.physicsforums.com/insights/relativator-circular-slide-rule-simulated-with-desmos/ by @robphy
Back
Top