My question is in regards to converting a system of differential equations into a higher order differential equation. I am an undergrad taking diff eq and have just learned the wonders of Euler's method of solving 2nd order differential equations with constant coefficients. It is significantly faster then using eigenvalues and eigenvectors.(adsbygoogle = window.adsbygoogle || []).push({});

My question is:

Can I always convert a system of (2) 1st order differential equations into (1) 2nd order differential equation?

If not, what attributes of the system allow me to identify that it cannot be converted?

Can I always convert a system of n-order differential equations into a single n-order differential equation? (I do not know why I would want to do this since Euler's method would not help in this instance, but you may as well generalize your answer if possible.)

Thank you in advance for any feedback.

Bizoid

**Physics Forums - The Fusion of Science and Community**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Conversion of System of Eq's to 2nd Order Diff Eq

Loading...

Similar Threads - Conversion System Eq's | Date |
---|---|

A Stability for a system of nonlinear ODEs | Tuesday at 3:34 PM |

I Boundary Conditions for System of PDEs | Jan 17, 2018 |

Conversion from Centered Diff Scheme to Ax = b | Jun 18, 2012 |

Help with conversion from rectangular to spherical coordinates | Mar 18, 2011 |

Please help in Gamma function to series conversion. | Nov 22, 2009 |

**Physics Forums - The Fusion of Science and Community**