There appear to be typographic mistakes in post 4. For example,
\sqrt{f^2(t)+64f^2(t)\left(\frac{df}{dt}\right)^2}\;=\:5\quad\ \ \mbox{should instead be}
\sqrt{\left(\frac{df}{dt}\right)^2+64f^2(t)\left(\frac{df}{dt}\right)^2}=\:5.
I would instead solve the given problem in post 1 as follows.
Given y = 4*x
2, ds/dt = 5 m/s. At x = 0, t = 0.
\mathbf{\vec s}=x\,\mathbf{i}+y\,\mathbf{j}
d\mathbf{\vec s}=dx\,\mathbf{i}+dy\,\mathbf{j}
ds=[(dx)^2+(dy)^2]^{0.5}
\mbox{But since }y=4x^2,\ \ \therefore \ dy=8x\,dx.\ \mbox{Therefore,}
\begin{equation*}\begin{split}ds&=[(dx)^2+64x^2(dx)^2]^{0.5}\\<br />
&=(1+64x^2)^{0.5}\,dx\end{equation*}\end{split}
\frac{ds}{dt}=(1+64x^2)^{0.5}\,\frac{dx}{dt}
\mbox{But }\frac{ds}{dt}=5\ \mbox{m/s}.
5=(1+64x^2)^{0.5}\,\frac{dx}{dt}
\begin{equation*}\begin{split}dt&=\frac{1}{5}(1+64x^2)^{0.5}\,dx\\<br />
&=\frac{8}{5}(\frac{1}{64}+x^2)^{0.5}\,dx\\<br />
&=\frac{8}{5}[\left(\frac{1}{8}\right)^2+x^2]^{0.5}\,dx\end{equation*}\end{split}
\int dt=\frac{8}{5}\int[\left(\frac{1}{8}\right)^2+x^2]^{0.5}\,dx
t=\frac{8}{5}\int[\left(\frac{1}{8}\right)^2+x^2]^{0.5}\,dx
Therefore, from any integral table,
t\:=\:\frac{4}{5}x\,(\frac{1}{64}+x^2)^{0.5}\ +\ \frac{1}{128}\ln|x+(\frac{1}{64}+x^2)^{0.5}|\ +\ c
\mbox{At}\ x=0,\ t=0;\ \ \therefore \ c=-\frac{1}{128}\ln(\frac{1}{8}).
\mbox{Now, let }\:x=\frac{1}{8}\sinh z.\ \ \mbox{Therefore,}
\begin{equation*}\begin{split}t\:&=\:\frac{1}{10}(\sinh z)(\frac{1}{64}+\frac{1}{64}\sinh^2z)^{0.5}\ \\<br />
&+\ \frac{1}{128}\ln\left[\frac{1}{8}\sinh z+(\frac{1}{64}+\frac{1}{64}\sinh^2z)^{0.5}\right]\ -\ \frac{1}{128}\ln(\frac{1}{8})\\<br />
&=\:\frac{1}{80}(\sinh z)(1+\sinh^2z)^{0.5}\ \\<br />
&+\ \frac{1}{128}\ln\left(\frac{1}{8}[\sinh z+(1+\sinh^2z)^{0.5}]\right)\ -\ \frac{1}{128}\ln(\frac{1}{8})\\<br />
&=\:\frac{1}{80}(\sinh z)(\cosh z)\ +\ \frac{1}{128}\ln\left[\frac{1}{8}(\sinh z+\cosh z)\right]\ -\ \frac{1}{128}\ln(\frac{1}{8})\\<br />
&=\:\frac{1}{80}(\sinh z)(\cosh z)\ +\ \frac{1}{128}\ln(\frac{1}{8}\,e^z)\ -\ \frac{1}{128}\ln(\frac{1}{8})\\<br />
&=\:\frac{1}{80}(\sinh z)(\cosh z)\ +\ \frac{1}{128}\ln(\frac{1}{8})\ +\ \frac{1}{128}\ln(e^z)\ -\ \frac{1}{128}\ln(\frac{1}{8})\\<br />
&=\:\frac{1}{80}(\sinh z)(\cosh z)\ +\ \frac{1}{128}\,z\\<br />
&=\:\frac{1}{160}\sinh(2z)\;+\;\frac{1}{128}\,z\end{split}\end{equation*}
Unfortunately, this equation cannot be solved analytically for z (to my knowledge). But you could solve it for z numerically, for any given value of t. And then you can compute the corresponding value of x and y, because x = 0.125*sinh(z), and y = 4*x
2.