VinnyCee
- 486
- 0
Another problem that I cannot figure out. Convert the follorwing into polar coordinates:
\int_{-1}^{1} \int_{-\sqrt{1 - y^2}}^{\sqrt{1 - y^2}} ln\left(x^2 + y^2 + 1\right) dx\;dy
I did this so far:
ln\left(x^2 + y^2 + 1\right) = ln\left(r^2 + 1\right)
\sqrt{1 - y^2} = \sqrt{1 - r^2 \sin^2 \theta}
Now what do I do?
Is this possibly right?
\int_{0}^{2\pi} \int_{-\sqrt{1 - r^2 \sin^2 \theta}}^{\sqrt{1 - r^2 \sin^2 \theta}} ln\left(r^2 + 1\right) dr\;d\theta
\int_{-1}^{1} \int_{-\sqrt{1 - y^2}}^{\sqrt{1 - y^2}} ln\left(x^2 + y^2 + 1\right) dx\;dy
I did this so far:
ln\left(x^2 + y^2 + 1\right) = ln\left(r^2 + 1\right)
\sqrt{1 - y^2} = \sqrt{1 - r^2 \sin^2 \theta}
Now what do I do?
Is this possibly right?
\int_{0}^{2\pi} \int_{-\sqrt{1 - r^2 \sin^2 \theta}}^{\sqrt{1 - r^2 \sin^2 \theta}} ln\left(r^2 + 1\right) dr\;d\theta
Last edited: