Converting single integral to double integral

Click For Summary
The discussion focuses on converting a single integral into a double integral, specifically examining the method used by a user named Venus. The key points include understanding how to separate the integral into parts and the process of interchanging the order of integration. It is noted that when integrating with respect to one variable, the other variable can be treated as a constant, allowing for simplifications. Additionally, the integral of a function like sin(x) can be manipulated by pulling it out of the integral or incorporating it within the integral. The conversation emphasizes the importance of understanding the criteria for these transformations in integral calculus.
Amad27
Messages
409
Reaction score
1

Homework Statement



Please refer to : http://math.stackexchange.com/quest...x-arctan-frac1x-mathrm-dx-fra/1069065#1069065

The answer by @venus.

What is the procedure in converting that single integral, dividing it into parts, and making it a double integral?

And also, how Venus took $\sin(x)$ and brought it inside the first integral, and interchanging the integrals?

What is the criterion?

I am very interested in this.

Any **links** advice or comment is very helpful.

Thanks!

Homework Equations


N/A

The Attempt at a Solution


N/A

I am looking for a general method, that's all.
 
Physics news on Phys.org
you're integrating with respect to y first, and therefore sin(x) is a constant with respect to your first integral, as is the integral of sin(x). You can pull it out of the second integral or put it into the integral.

The second integral came from the fact that ##\int \frac{x}{x^2 +y^2} = arctan(\frac{1}{x})## and that's in the original integral. Just another way of expressing the same thing.

If I had ##\int xy dx##, where y was a function of x let's say equal to x, we could write that as ##\int x \int (\frac{d}{dx})(y)## since the integral cancels the derivative acting on y. This then becomes ##\int \int xdydx## and the first integral you calculate is dy, (x is a constant with respect to y)so you end up back at... well, I'll let you take it from here. On math.stack, y = arctan(\frac{1}x{x}
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 10 ·
Replies
10
Views
2K
Replies
9
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 9 ·
Replies
9
Views
2K