Convolution and space-time Fourier transform

AI Thread Summary
The discussion centers on the space-time Fourier transform of the convolution G⊗(∂nu/∂tn) and whether the relation G⊗(∂nu/∂tn) = ∂n(G⊗u)/∂tn holds true. Participants highlight the importance of applying Fourier transform properties and the convolution theorem to address these questions. There is a focus on the challenges posed by the function u, which does not converge to zero at infinity, leading to considerations of generalized Fourier transforms. The interchange of differentiation and integration is also discussed, noting that it typically holds for "nice" functions but may not apply universally. The conversation emphasizes the complexities of handling functions in both space and time domains.
shekharc
Messages
2
Reaction score
0
Hi,

I have a general function u(x,y,z,t). Then, (1) what would be the space-time Fourier transform of G⊗(∂nu/∂tn) and (2) would the relation G⊗(∂nu/∂tn) = ∂n(G⊗u)/∂tn hold true? Here, note that the symbol ⊗ represents convolution and G is a function of (x,y,z) only (i.e. it does not depend on time).

Any answer would appreciated. Thanks!

-Chandra
 
Mathematics news on Phys.org
Chandra,

Most of your question is answered by applying the properties of Fourier transforms, all of which are, for exmaple, at:
http://fourier.eng.hmc.edu/e101/lectures/handout3/node2.html
including the convolution theorem (in link above and in this link: https://en.wikipedia.org/wiki/Convolution_theorem )
and a knowledge of the Fourier transform of a derivative.
shekharc said:
would the relation G⊗(∂nu/∂tn) = ∂n(G⊗u)/∂tn hold true?
Here you are essentially asking a question about interchanging differentiation and integration. As an engineer, I typically deal with "nice" functions for which this holds (indeed, I assume it holds!), but it doesn't always hold for any choice of functions. I cannot help you much more than that - sorry!
jason
 
Dear Jason,

Thanks for your suggestions. In fact, I was a bit confused because of involvement of both space and time in the Fourier transform. Anyway, I did it (hopefully correctly) by taking Fourier transforms two times; first, I took the transform with respect to space, and then with respect to time. As for the 2nd question, "u" is not a very nice function--it does not converge to zero when x,y,z-->INFINITY. So, currently I am looking at whether I can use generalized Fourier Transforms to deal with it.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...

Similar threads

Back
Top