Convolution and space-time Fourier transform

shekharc
Messages
2
Reaction score
0
Hi,

I have a general function u(x,y,z,t). Then, (1) what would be the space-time Fourier transform of G⊗(∂nu/∂tn) and (2) would the relation G⊗(∂nu/∂tn) = ∂n(G⊗u)/∂tn hold true? Here, note that the symbol ⊗ represents convolution and G is a function of (x,y,z) only (i.e. it does not depend on time).

Any answer would appreciated. Thanks!

-Chandra
 
Mathematics news on Phys.org
Chandra,

Most of your question is answered by applying the properties of Fourier transforms, all of which are, for exmaple, at:
http://fourier.eng.hmc.edu/e101/lectures/handout3/node2.html
including the convolution theorem (in link above and in this link: https://en.wikipedia.org/wiki/Convolution_theorem )
and a knowledge of the Fourier transform of a derivative.
shekharc said:
would the relation G⊗(∂nu/∂tn) = ∂n(G⊗u)/∂tn hold true?
Here you are essentially asking a question about interchanging differentiation and integration. As an engineer, I typically deal with "nice" functions for which this holds (indeed, I assume it holds!), but it doesn't always hold for any choice of functions. I cannot help you much more than that - sorry!
jason
 
Dear Jason,

Thanks for your suggestions. In fact, I was a bit confused because of involvement of both space and time in the Fourier transform. Anyway, I did it (hopefully correctly) by taking Fourier transforms two times; first, I took the transform with respect to space, and then with respect to time. As for the 2nd question, "u" is not a very nice function--it does not converge to zero when x,y,z-->INFINITY. So, currently I am looking at whether I can use generalized Fourier Transforms to deal with it.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top