1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Cooling of bottle, beyond homework

  1. Dec 3, 2015 #1
    1. The problem statement, all variables and given/known data
    For how long you have to let bottle in a river, if you want to cool a liquid inside from 22 °C to 12 °C, when river is 8 °C?

    2. Relevant equations
    Q=cm(T1-T2), Qc=l*S(T-Triver)/d *t

    3. The attempt at a solution
    I know how to solve it for a case when we substitute in equation Qc for conduction of heat T by average temperature of bottle from starting and finishing state. But I believe it should be possible to solve it as a differential equation for changing "T" in Qc. But I don't know how to find out dependency T(t), t- time. Or should I do it some other way?

    Thank you for your help and advice.
     
  2. jcsd
  3. Dec 3, 2015 #2

    gneill

    User Avatar

    Staff: Mentor

    Have you taken a look at Newton's Law of Cooling?
     
  4. Dec 3, 2015 #3
    Hello, thank you for response. No I didn't till now :) I'm looking for some relevant site, best is with some already solved problem, I could learn from it. Or what do you suggest?
     
  5. Dec 3, 2015 #4

    gneill

    User Avatar

    Staff: Mentor

    I suggest a web search on "Newtons Law of Cooling example" :smile:
     
  6. Dec 3, 2015 #5
    It seems relevent T-T0=(T-T0)exp(-kt). But I gues it is solution of some differential equation.
     
  7. Dec 3, 2015 #6

    gneill

    User Avatar

    Staff: Mentor

    It is. You can find its derivation on the web easily. It begins with the rate of temperature change being proportional to the difference in temperature between the object and its environment.
     
  8. Dec 3, 2015 #7
    You have the two equations in your Relevant Equations. You just need to modify the first one a little to take into account the time dependence. Using your symbols, the transient heat balance is:
    $$cm\frac{dT}{dt}=-l*S(T-T_{river})/d$$
    where l is the thermal conductivity. This is the Newton cooling equation identified by gneill.

    Chet
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted



Similar Discussions: Cooling of bottle, beyond homework
  1. Sound in Bottle (Replies: 0)

  2. Pressure in a bottle (Replies: 3)

Loading...