A Correct coordinate transformation from Poincare-AdS##_3## to global AdS##_3##

highflyyer
Messages
27
Reaction score
1
Consider the transformation from Poincare-AdS##_3## geometry to global AdS##_3## geometry:

$$ds^{2} = \frac{dr^{2}}{r^{2}} + r^{2}g_{\alpha\beta}dx^{\alpha}dx^{\beta}, \qquad \text{Poincare-AdS$_3$}$$
$$ds^{2} = \frac{dr^{2}}{r^{2}} + r^{2}\left(-dt^{2}+r^{2}d\phi^{2}\right), \qquad \text{Poincare-AdS$_3$}$$
$$ds^{2} = - r^{2}dt^{2} + \frac{dr^{2}}{r^{2}} + r^{4}d\phi^{2}, \qquad \text{Poincare-AdS$_3$}$$
$$ds^{2} = -\cosh^{2}\rho\ d\tau^{2} + d\rho^{2} + \sinh^{2}\rho\ d\varphi^{2}, \qquad \text{global AdS$_3$}$$

where the transformation of coordinates is as follows:

$$\rho = \ln r, \qquad \tau = \left(\frac{2e^{\rho}}{e^{\rho}+e^{-\rho}}\right)t, \qquad \varphi = \left(\frac{2e^{2\rho}}{e^{\rho}-e^{-\rho}}\right)\phi.$$

------------------------------------------------

The transformation ##\rho = \ln r## simply rescales the radial distance ##r## by the logarithmic function.

The transformation with ##\displaystyle{\tau = \left(\frac{2e^{\rho}}{e^{\rho}+e^{-\rho}}\right)t}## rescales the time ##t## by the factor ##\displaystyle{\frac{2e^{\rho}}{e^{\rho}+e^{-\rho}}}##. For example, at ##\rho = 0##, we have ##\tau = t##, and at ##\rho = \infty##, we have ##\tau = 2t##.

The transformation with ##\displaystyle{\varphi = \left(\frac{2e^{2\rho}}{e^{\rho}-e^{-\rho}}\right)\phi}## rescales the angle ##\phi## by the factor ##\displaystyle{\frac{2e^{2\rho}}{e^{\rho}-e^{-\rho}}}##. For example, at ##\rho = 0##, we have ##\varphi = \infty##, and at ##\rho = \infty##, we have ##\varphi = \infty##.

-------------------------

Have I made a mistake in my interpretation of the transformation ##\displaystyle{\varphi = \left(\frac{2e^{2\rho}}{e^{\rho}-e^{-\rho}}\right)\phi}##?
 
Physics news on Phys.org
I don't think any of your interpretations are correct. I wouldn't use "rescale" to describe any of these, especially not for ##\tau## and ##\varphi##. The new coordinates are a mixture of all of the old ones, not merely "rescaled".

To give the best interpretion of these, I would draw some diagrams.
 
You may have a look at this online worksheet. At the end of it, the transformation from Poincaré coordinates to global ones is considered. This is for AdS4, but I guess you can easily adapt to AdS3.
 
  • Like
Likes fresh_42 and highflyyer
Thank you.
 
In Philippe G. Ciarlet's book 'An introduction to differential geometry', He gives the integrability conditions of the differential equations like this: $$ \partial_{i} F_{lj}=L^p_{ij} F_{lp},\,\,\,F_{ij}(x_0)=F^0_{ij}. $$ The integrability conditions for the existence of a global solution ##F_{lj}## is: $$ R^i_{jkl}\equiv\partial_k L^i_{jl}-\partial_l L^i_{jk}+L^h_{jl} L^i_{hk}-L^h_{jk} L^i_{hl}=0 $$ Then from the equation: $$\nabla_b e_a= \Gamma^c_{ab} e_c$$ Using cartesian basis ## e_I...
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. The Relativator was sold by (as printed) Atomic Laboratories, Inc. 3086 Claremont Ave, Berkeley 5, California , which seems to be a division of Cenco Instruments (Central Scientific Company)... Source: https://www.physicsforums.com/insights/relativator-circular-slide-rule-simulated-with-desmos/ by @robphy
Back
Top