A Correct coordinate transformation from Poincare-AdS##_3## to global AdS##_3##

highflyyer
Messages
27
Reaction score
1
Consider the transformation from Poincare-AdS##_3## geometry to global AdS##_3## geometry:

$$ds^{2} = \frac{dr^{2}}{r^{2}} + r^{2}g_{\alpha\beta}dx^{\alpha}dx^{\beta}, \qquad \text{Poincare-AdS$_3$}$$
$$ds^{2} = \frac{dr^{2}}{r^{2}} + r^{2}\left(-dt^{2}+r^{2}d\phi^{2}\right), \qquad \text{Poincare-AdS$_3$}$$
$$ds^{2} = - r^{2}dt^{2} + \frac{dr^{2}}{r^{2}} + r^{4}d\phi^{2}, \qquad \text{Poincare-AdS$_3$}$$
$$ds^{2} = -\cosh^{2}\rho\ d\tau^{2} + d\rho^{2} + \sinh^{2}\rho\ d\varphi^{2}, \qquad \text{global AdS$_3$}$$

where the transformation of coordinates is as follows:

$$\rho = \ln r, \qquad \tau = \left(\frac{2e^{\rho}}{e^{\rho}+e^{-\rho}}\right)t, \qquad \varphi = \left(\frac{2e^{2\rho}}{e^{\rho}-e^{-\rho}}\right)\phi.$$

------------------------------------------------

The transformation ##\rho = \ln r## simply rescales the radial distance ##r## by the logarithmic function.

The transformation with ##\displaystyle{\tau = \left(\frac{2e^{\rho}}{e^{\rho}+e^{-\rho}}\right)t}## rescales the time ##t## by the factor ##\displaystyle{\frac{2e^{\rho}}{e^{\rho}+e^{-\rho}}}##. For example, at ##\rho = 0##, we have ##\tau = t##, and at ##\rho = \infty##, we have ##\tau = 2t##.

The transformation with ##\displaystyle{\varphi = \left(\frac{2e^{2\rho}}{e^{\rho}-e^{-\rho}}\right)\phi}## rescales the angle ##\phi## by the factor ##\displaystyle{\frac{2e^{2\rho}}{e^{\rho}-e^{-\rho}}}##. For example, at ##\rho = 0##, we have ##\varphi = \infty##, and at ##\rho = \infty##, we have ##\varphi = \infty##.

-------------------------

Have I made a mistake in my interpretation of the transformation ##\displaystyle{\varphi = \left(\frac{2e^{2\rho}}{e^{\rho}-e^{-\rho}}\right)\phi}##?
 
Physics news on Phys.org
I don't think any of your interpretations are correct. I wouldn't use "rescale" to describe any of these, especially not for ##\tau## and ##\varphi##. The new coordinates are a mixture of all of the old ones, not merely "rescaled".

To give the best interpretion of these, I would draw some diagrams.
 
You may have a look at this online worksheet. At the end of it, the transformation from Poincaré coordinates to global ones is considered. This is for AdS4, but I guess you can easily adapt to AdS3.
 
  • Like
Likes fresh_42 and highflyyer
Thank you.
 
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
So, to calculate a proper time of a worldline in SR using an inertial frame is quite easy. But I struggled a bit using a "rotating frame metric" and now I'm not sure whether I'll do it right. Couls someone point me in the right direction? "What have you tried?" Well, trying to help truly absolute layppl with some variation of a "Circular Twin Paradox" not using an inertial frame of reference for whatevere reason. I thought it would be a bit of a challenge so I made a derivation or...
Back
Top