A Correct coordinate transformation from Poincare-AdS##_3## to global AdS##_3##

highflyyer
Messages
27
Reaction score
1
Consider the transformation from Poincare-AdS##_3## geometry to global AdS##_3## geometry:

$$ds^{2} = \frac{dr^{2}}{r^{2}} + r^{2}g_{\alpha\beta}dx^{\alpha}dx^{\beta}, \qquad \text{Poincare-AdS$_3$}$$
$$ds^{2} = \frac{dr^{2}}{r^{2}} + r^{2}\left(-dt^{2}+r^{2}d\phi^{2}\right), \qquad \text{Poincare-AdS$_3$}$$
$$ds^{2} = - r^{2}dt^{2} + \frac{dr^{2}}{r^{2}} + r^{4}d\phi^{2}, \qquad \text{Poincare-AdS$_3$}$$
$$ds^{2} = -\cosh^{2}\rho\ d\tau^{2} + d\rho^{2} + \sinh^{2}\rho\ d\varphi^{2}, \qquad \text{global AdS$_3$}$$

where the transformation of coordinates is as follows:

$$\rho = \ln r, \qquad \tau = \left(\frac{2e^{\rho}}{e^{\rho}+e^{-\rho}}\right)t, \qquad \varphi = \left(\frac{2e^{2\rho}}{e^{\rho}-e^{-\rho}}\right)\phi.$$

------------------------------------------------

The transformation ##\rho = \ln r## simply rescales the radial distance ##r## by the logarithmic function.

The transformation with ##\displaystyle{\tau = \left(\frac{2e^{\rho}}{e^{\rho}+e^{-\rho}}\right)t}## rescales the time ##t## by the factor ##\displaystyle{\frac{2e^{\rho}}{e^{\rho}+e^{-\rho}}}##. For example, at ##\rho = 0##, we have ##\tau = t##, and at ##\rho = \infty##, we have ##\tau = 2t##.

The transformation with ##\displaystyle{\varphi = \left(\frac{2e^{2\rho}}{e^{\rho}-e^{-\rho}}\right)\phi}## rescales the angle ##\phi## by the factor ##\displaystyle{\frac{2e^{2\rho}}{e^{\rho}-e^{-\rho}}}##. For example, at ##\rho = 0##, we have ##\varphi = \infty##, and at ##\rho = \infty##, we have ##\varphi = \infty##.

-------------------------

Have I made a mistake in my interpretation of the transformation ##\displaystyle{\varphi = \left(\frac{2e^{2\rho}}{e^{\rho}-e^{-\rho}}\right)\phi}##?
 
Physics news on Phys.org
I don't think any of your interpretations are correct. I wouldn't use "rescale" to describe any of these, especially not for ##\tau## and ##\varphi##. The new coordinates are a mixture of all of the old ones, not merely "rescaled".

To give the best interpretion of these, I would draw some diagrams.
 
You may have a look at this online worksheet. At the end of it, the transformation from Poincaré coordinates to global ones is considered. This is for AdS4, but I guess you can easily adapt to AdS3.
 
  • Like
Likes fresh_42 and highflyyer
Thank you.
 
I asked a question here, probably over 15 years ago on entanglement and I appreciated the thoughtful answers I received back then. The intervening years haven't made me any more knowledgeable in physics, so forgive my naïveté ! If a have a piece of paper in an area of high gravity, lets say near a black hole, and I draw a triangle on this paper and 'measure' the angles of the triangle, will they add to 180 degrees? How about if I'm looking at this paper outside of the (reasonable)...
Thread 'Relativity of simultaneity in actuality'
I’m attaching two figures from the book, Basic concepts in relativity and QT, by Resnick and Halliday. They are describing the relativity of simultaneity from a theoretical pov, which I understand. Basically, the lightning strikes at AA’ and BB’ can be deemed simultaneous either in frame S, in which case they will not be simultaneous in frame S’, and vice versa. Only in one of the frames are the two events simultaneous, but not in both, and this claim of simultaneity can be done by either of...
Back
Top