Correct coordinate transformation from Poincare-AdS##_3## to global AdS##_3##

Click For Summary
SUMMARY

The discussion focuses on the coordinate transformation from Poincare-AdS3 to global AdS3 geometry, detailing the metric representations and the transformations of coordinates. The transformations are defined as follows: ρ = ln(r), τ = (2eρ/(eρ + e))t, and φ = (2e/(eρ - e))φ. The transformation is clarified as a mixture of the original coordinates rather than a simple rescaling, emphasizing the need for accurate interpretation and visual aids for better understanding.

PREREQUISITES
  • Understanding of Poincare-AdS3 and global AdS3 geometries
  • Familiarity with differential geometry and metric tensors
  • Knowledge of coordinate transformations in theoretical physics
  • Basic proficiency in mathematical notation and functions
NEXT STEPS
  • Study the implications of coordinate transformations in general relativity
  • Explore the use of diagrams for visualizing transformations in AdS spaces
  • Investigate the properties of hyperbolic functions in relation to AdS geometry
  • Review online resources and worksheets on AdS geometry transformations
USEFUL FOR

The discussion is beneficial for theoretical physicists, mathematicians specializing in geometry, and students studying general relativity or string theory, particularly those interested in the properties of Anti-de Sitter spaces.

highflyyer
Messages
27
Reaction score
1
Consider the transformation from Poincare-AdS##_3## geometry to global AdS##_3## geometry:

$$ds^{2} = \frac{dr^{2}}{r^{2}} + r^{2}g_{\alpha\beta}dx^{\alpha}dx^{\beta}, \qquad \text{Poincare-AdS$_3$}$$
$$ds^{2} = \frac{dr^{2}}{r^{2}} + r^{2}\left(-dt^{2}+r^{2}d\phi^{2}\right), \qquad \text{Poincare-AdS$_3$}$$
$$ds^{2} = - r^{2}dt^{2} + \frac{dr^{2}}{r^{2}} + r^{4}d\phi^{2}, \qquad \text{Poincare-AdS$_3$}$$
$$ds^{2} = -\cosh^{2}\rho\ d\tau^{2} + d\rho^{2} + \sinh^{2}\rho\ d\varphi^{2}, \qquad \text{global AdS$_3$}$$

where the transformation of coordinates is as follows:

$$\rho = \ln r, \qquad \tau = \left(\frac{2e^{\rho}}{e^{\rho}+e^{-\rho}}\right)t, \qquad \varphi = \left(\frac{2e^{2\rho}}{e^{\rho}-e^{-\rho}}\right)\phi.$$

------------------------------------------------

The transformation ##\rho = \ln r## simply rescales the radial distance ##r## by the logarithmic function.

The transformation with ##\displaystyle{\tau = \left(\frac{2e^{\rho}}{e^{\rho}+e^{-\rho}}\right)t}## rescales the time ##t## by the factor ##\displaystyle{\frac{2e^{\rho}}{e^{\rho}+e^{-\rho}}}##. For example, at ##\rho = 0##, we have ##\tau = t##, and at ##\rho = \infty##, we have ##\tau = 2t##.

The transformation with ##\displaystyle{\varphi = \left(\frac{2e^{2\rho}}{e^{\rho}-e^{-\rho}}\right)\phi}## rescales the angle ##\phi## by the factor ##\displaystyle{\frac{2e^{2\rho}}{e^{\rho}-e^{-\rho}}}##. For example, at ##\rho = 0##, we have ##\varphi = \infty##, and at ##\rho = \infty##, we have ##\varphi = \infty##.

-------------------------

Have I made a mistake in my interpretation of the transformation ##\displaystyle{\varphi = \left(\frac{2e^{2\rho}}{e^{\rho}-e^{-\rho}}\right)\phi}##?
 
Physics news on Phys.org
I don't think any of your interpretations are correct. I wouldn't use "rescale" to describe any of these, especially not for ##\tau## and ##\varphi##. The new coordinates are a mixture of all of the old ones, not merely "rescaled".

To give the best interpretion of these, I would draw some diagrams.
 
You may have a look at this online worksheet. At the end of it, the transformation from Poincaré coordinates to global ones is considered. This is for AdS4, but I guess you can easily adapt to AdS3.
 
  • Like
Likes   Reactions: fresh_42 and highflyyer
Thank you.
 

Similar threads

  • · Replies 8 ·
Replies
8
Views
721
  • · Replies 2 ·
Replies
2
Views
2K
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
5K
  • · Replies 23 ·
Replies
23
Views
2K