MHB Correcting Resolutions: Is it Right?

  • Thread starter Thread starter squexy
  • Start date Start date
AI Thread Summary
The discussion focuses on verifying the correctness of resolutions for two mathematical problems involving trigonometric identities and functions. The first problem involves the equation sin(x) + cos(x) = 4/3, leading to the derivation of sin(x) and cos(x) values through squaring and applying Pythagorean identities. The second problem examines the function composition f(g(x)) and g(f(x)), with algebraic manipulations to solve for the variable p, revealing a mistake in the initial calculations. Participants also explore alternative methods to solve the first equation, including expressing it in terms of a single sine function. The conversation highlights the complexity of the problems and the importance of careful algebraic manipulation.
squexy
Messages
18
Reaction score
0
´
Could anyone tell me if the resolutions of these questions are correct?View attachment 3754

Cosx = 4/3 - sin x

Six - 4/3 - Sin x = 0
2 Sinx = 4/3
Sinx = 4/6

Cosx = 4/3 - 4/6
Cosx = 8/6 - 4/6
Cosx = 4/6
View attachment 3755

G(x) = 5x + 1
5*(px+2)+1
5px + p = 5px + 10+ 1
p = 11
 

Attachments

  • asdasdasdasdasd.jpg
    asdasdasdasdasd.jpg
    2.3 KB · Views: 119
  • dasdasdasdasdasd.jpg
    dasdasdasdasdasd.jpg
    2.8 KB · Views: 124
Mathematics news on Phys.org
For the first one, I would begin with the given:

$$\sin(x)+\cos(x)=\frac{4}{3}$$

Square it:

$$\sin^2(x)+2\sin(x)\cos(x)+\cos^2(x)=\frac{16}{9}$$

Apply a Pythagorean identity:

$$2\sin(x)\cos(x)+1=\frac{16}{9}$$

$$2\sin(x)\cos(x)=\frac{7}{9}$$

Now, let:

$$\sin(x)-\cos(x)=a$$

Square this, apply a Pythagorean identity, use the result above, and take the appropriate root for $a$...what do you find?
 
For the second problem, we find:

$$f(g(x))=-p(5x+1)+2$$

$$g(f(x))=5(-px+2)+1$$

Hence:

$$-p(5x+1)+2=5(-px+2)+1$$

Solving for $p$, what do you find?
 
MarkFL said:
For the first one, I would begin with the given:

$$\sin(x)+\cos(x)=\frac{4}{3}$$

Square it:

$$\sin^2(x)+2\sin(x)\cos(x)+\cos^2(x)=\frac{16}{9}$$

Apply a Pythagorean identity:

$$2\sin(x)\cos(x)+1=\frac{16}{9}$$

$$2\sin(x)\cos(x)=\frac{7}{9}$$

Now, let:

$$\sin(x)-\cos(x)=a$$

Square this, apply a Pythagorean identity, use the result above, and take the appropriate root for $a$...what do you find?
Sin^2 x -2(sinx . cosx) + cos^2(x)= a^2

-2(sinx . cosx) + 1= a^2
- 2(six . cosx) = a^2 - 1
7/9 = - a^2 + 1
7/ 9 -9/9 = a^2
2/9 = -a^2
a = √-2/9

MarkFL said:
For the second problem, we find:

$$f(g(x))=-p(5x+1)+2$$

$$g(f(x))=5(-px+2)+1$$

Hence:

$$-p(5x+1)+2=5(-px+2)+1$$

Solving for $p$, what do you find?

-5px - p = -5px +10 + 1
- p = 11
p = - 11
 
For the first one, you get to:

$$a^2=\frac{2}{9}$$

Observing that on $$0\le x\le\frac{\pi}{4}$$ we have:

$$\cos(x)\ge\sin(x)\implies 0\ge\sin(x)-\cos(x)$$ we then know we have to take the negative root:

$$a=-\frac{\sqrt{2}}{3}$$

For the second one, check your algebra...your result is incorrect as you forgot about the 2 on the left side.
 
MarkFL said:
For the first one, you get to:

$$a^2=\frac{2}{9}$$

Observing that on $$0\le x\le\frac{\pi}{4}$$ we have:

$$\cos(x)\ge\sin(x)\implies 0\ge\sin(x)-\cos(x)$$ we then know we have to take the negative root:

$$a=-\frac{\sqrt{2}}{3}$$

For the second one, check your algebra...your result is incorrect as you forgot about the 2 on the left side.
-5px - p +2 = -5px +10 + 1
- p = 9
p = - 9
 
squexy said:
-5px - p +2 = -5px +10 + 1
- p = 9
p = - 9

Yes, that's correct. (Yes)
 
squexy said:
´
Could anyone tell me if the resolutions of these questions are correct?View attachment 3754

Cosx = 4/3 - sin x

Six - 4/3 - Sin x = 0
2 Sinx = 4/3
Sinx = 4/6

Cosx = 4/3 - 4/6
Cosx = 8/6 - 4/6
Cosx = 4/6
View attachment 3755

G(x) = 5x + 1
5*(px+2)+1
5px + p = 5px + 10+ 1
p = 11

As an alternative to Question 1, it is possible to write a linear combination $\displaystyle \begin{align*} a\sin{(x)} + b\cos{(x)} = c\sin{ \left( x + \varphi \right) } \end{align*}$, where $\displaystyle \begin{align*} c = \sqrt{a^2 + b^2} \end{align*}$. Don't believe me? Well in your case, $\displaystyle \begin{align*} a = b = 1 \end{align*}$, so $\displaystyle \begin{align*} c = \sqrt{1^2 + 1^2} = \sqrt{2} \end{align*}$. Thus

$\displaystyle \begin{align*} \sqrt{2}\sin{ \left( x + \varphi \right) } &= \sin{(x)} + \cos{(x)} \\ \sqrt{2} \left[ \sin{(x)}\cos{(\varphi )} + \cos{(x)} \sin{ \left( \varphi \right) } \right] &= \sin{(x)} + \cos{(x)} \\ \sqrt{2}\sin{(x)}\cos{(\varphi )} + \sqrt{2}\cos{(x)}\sin{(\varphi )} &= \sin{(x)} + \cos{(x)} \end{align*}$

So that means $\displaystyle \begin{align*} \sqrt{2}\cos{ (\varphi )} = 1 \end{align*}$ and $\displaystyle \begin{align*} \sqrt{2}\sin{( \varphi )} = 1 \end{align*}$. It should be pretty obvious then that $\displaystyle \begin{align*} \varphi = \frac{\pi}{4} \end{align*}$.

Thus $\displaystyle \begin{align*} \sin{(x)} + \cos{(x)} = \sqrt{2} \sin{ \left( x + \frac{\pi}{4} \right) } \end{align*}$. So now we should be able to solve the problem...

$\displaystyle \begin{align*} \sin{(x)} + \cos{(x)} &= \frac{4}{3} \\ \sqrt{2} \sin{ \left( x + \frac{\pi}{4} \right) } &= \frac{4}{3} \\ \sin{ \left( x + \frac{\pi}{4} \right) } &= \frac{4}{3\,\sqrt{2}} \\ \sin{ \left( x + \frac{\pi}{4} \right) } &= \frac{ 4\,\sqrt{2}}{3 \cdot 2 } \\ \sin{ \left( x + \frac{\pi}{4} \right) } &= \frac{2\,\sqrt{2}}{3} \\ x + \frac{\pi}{4} &= \arcsin{ \left( \frac{2\,\sqrt{2}}{3} \right) } \\ x &= \arcsin{ \left( \frac{2\,\sqrt{2}}{3} \right) } - \frac{\pi}{4} \end{align*}$

Now you should be able to find $\displaystyle \begin{align*} \sin{(x)} - \cos{(x)} \end{align*}$, but it will look absolutely horrible...

$\displaystyle \begin{align*} \sin{(x)} - \cos{(x)} &= \sin{ \left[ \arcsin{ \left( \frac{2\,\sqrt{2}}{3} \right) } - \frac{\pi}{4} \right] } - \cos{ \left[ \arcsin{ \left( \frac{2\,\sqrt{2}}{3} \right) } - \frac{\pi}{4} \right] } \\ &= \sin{ \left[ \arcsin{ \left( \frac{2\,\sqrt{2}}{3} \right) } \right] } \cos{ \left( \frac{\pi}{4} \right) } - \cos{ \left[ \arcsin{ \left( \frac{2\,\sqrt{2}}{3} \right) } \right] } \sin{ \left( \frac{\pi}{4} \right) } - \left\{ \cos{ \left[ \arcsin{ \left( \frac{2\,\sqrt{2}}{3} \right) } \right] } \cos{ \left( \frac{\pi}{4} \right) } + \sin{ \left[ \arcsin{ \left( \frac{2\,\sqrt{2}}{3} \right) } \right] } \sin{ \left( \frac{\pi}{4} \right) } \right\} \\ &= \frac{2\,\sqrt{2}}{3} \cdot \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}\cos{ \left[ \arcsin{ \left( \frac{2\,\sqrt{2}}{3} \right) } \right] } - \left\{ \frac{1}{\sqrt{2}} \cos{ \left[ \arcsin{ \left( \frac{2\,\sqrt{2}}{3} \right) } \right] } + \frac{2\,\sqrt{2}}{3} \cdot \frac{1}{\sqrt{2}} \right\} \\ &= \frac{2}{3} - \frac{1}{\sqrt{2}} \,\sqrt{ 1 - \left\{ \sin{ \left[ \arcsin{ \left( \frac{2\,\sqrt{2}}{3} \right) } \right] } \right\} ^2 } - \left( \frac{1}{\sqrt{2}} \,\sqrt{ 1 - \left\{ \sin{ \left[ \arcsin{ \left( \frac{2\,\sqrt{2}}{3} \right) } \right] } \right\} ^2 } + \frac{2}{3} \right) \\ &= \frac{2}{3} - \frac{1}{\sqrt{2}}\,\sqrt{ 1 - \left( \frac{2\,\sqrt{2}}{3} \right) ^2 } - \left[ \frac{1}{\sqrt{2}} \,\sqrt{ 1 - \left( \frac{2\,\sqrt{2}}{3} \right) ^2 } + \frac{2}{3} \right] \\ &= \frac{2}{3} - \frac{1}{\sqrt{2}}\,\sqrt{ 1 - \frac{8}{9} } - \left[ \frac{1}{\sqrt{2}}\,\sqrt{ 1 - \frac{8}{9} } + \frac{2}{3} \right] \\ &= \frac{2}{3} - \frac{1}{\sqrt{2}} \,\sqrt{\frac{1}{9}} - \left[ \frac{1}{\sqrt{2}}\,\sqrt{\frac{1}{9}} + \frac{2}{3} \right] \\ &= \frac{2}{3} - \frac{1}{\sqrt{2}}\cdot \frac{1}{3} - \frac{1}{\sqrt{2}}\cdot \frac{1}{3} - \frac{2}{3} \\ &= -\frac{2}{3\,\sqrt{2}} \\ &= -\frac{\sqrt{2}}{3} \end{align*}$
 
Last edited:
Amazing! (Cool)
Your mistake was so subtle that even though I tracked the precise location of your mistake with my calculator, I could not pinpoint where it occurred!
$$\displaystyle \begin{align*} &= \frac{2}{3} - \frac{1}{\sqrt{2}} \,\sqrt{\frac{1}{9}} - \left[ \frac{1}{\sqrt{2}}\,\sqrt{\frac{1}{9}} + \frac{2}{3} \right] \\ &= \color{red}\frac{2}{3} - \frac{1}{\sqrt{2}}\,\frac{1}{\sqrt{3}} - \frac{1}{\sqrt{2}}\,\frac{1}{\sqrt{3}} - \frac{2}{3} \\ &= -\frac{2}{\sqrt{6}} \\ &= -\frac{2\,\sqrt{6}}{6} \\ &= -\frac{\sqrt{6}}{3} \end{align*}$$

$$\sqrt{\frac{1}{9}}=\frac{1}{3}\ne \frac{1}{\sqrt{3}}$$
:D
 
  • #10
Rido12 said:
Amazing! (Cool)
Your mistake was so subtle that even though I tracked the precise location of your mistake with my calculator, I could not pinpoint where it occurred!$$\sqrt{\frac{1}{9}}=\frac{1}{3}\ne \frac{1}{\sqrt{3}}$$
:D

Typical, I can do mathemagic and can't do basic arithmetic >_< hahaha will edit now (y)
 
  • #11
A more general solution to the problem which also does not require trigonometry equation...

$\displaystyle \sin x + \cos x = \frac{4}{3}\ (1)$

... consists in placing $\sin x = y$ and this leads to the equation...

$\displaystyle y + \sqrt{1 - y^{2}} = \frac{4}{3}\ (2)$

The solution of (1) is immediate ...

$\displaystyle y = \sin x = \frac{2}{3} \pm \frac{\sqrt{2}}{6}\ (3)$

Looking at the (1) it turns out that $\sin x$ and $\cos x$ that they can be exchanged between them and that means also that is...

$\displaystyle \sin x - \cos x = \pm \frac{\sqrt{2}}{3}\ (4)$

Kind regards

$\chi$ $\sigma$
 
Back
Top