Correlation of two portfolios given price correlations of assets

  • Thread starter Thread starter grmnsplx
  • Start date Start date
  • Tags Tags
    Correlation
grmnsplx
Messages
38
Reaction score
0
Hello all. I am not a stats person so I would like some help/confirmation on this one.

What I am trying to achieve (if possible) is a metric on how two portfolios (or strategies) are correlated.

Imagine there are two portfolios of assets A,B,C,D... with different weights of each asset.
eg. P1 = (5, 2, 0, -3, ...) and P2 = (0, 3, 10, -5, ...)

(Read this as Portfolio one consisting of 5 of asset A, 2 of asset B, no asset C, -3 of asset D and so on. The negative values means that the portfolio is short that asset.)

Let the correlation coefficients of each asset pair be given such that we can construct a typical correlation matrix (NxN square matrix, where ai,j is the correlation coefficient for assets i and j).

I *think* that all I need to do is:

1. Multiply each portfolio vector by the correlation matrix
Mcorrelation°P1 = X1 and Mcorrelation°P2 = X2
2. Calculate the correlation onf the two datasets (vectors) X1 and X2
Corr(X1,X2) = Corr(P1,P2)


I have done this for several portfolios and what I arrive at looks right, but I am not sure if it is right. Am I out to lunch? Thoughts?

Much appreciated.
 
Physics news on Phys.org
*bump*
 
grmnsplx said:
*bump*

I suspect most forum members aren't familiar with financial mathematics. (I'm not.) It sounds like you are asking a question about linear combinations of random variables. Does the definition of "correlation" between two portfolios amount to finding the correlation coefficient between two random variables, each of which is a linear combination of other random variables?
 
Stephen Tashi said:
I suspect most forum members aren't familiar with financial mathematics. (I'm not.) It sounds like you are asking a question about linear combinations of random variables. Does the definition of "correlation" between two portfolios amount to finding the correlation coefficient between two random variables, each of which is a linear combination of other random variables?

Yes, that's right.
If I am not mistaken, it looks like I am doing a Least ordinary squares.
 
I suggest you write out the case of two stocks A and B which will only involve 2x2 matrices. At least, write out what you are given and what you are asking in symbolic form. That will save people from having to guess at the meaning of things like "portfolio vector".

Look up how to use LaTex on the forum. I think your question begins as follows:

Let A,B be two independent random variables with respective means \mu_A, \mu_B and standard deviations \sigma_A,\sigma_B.

let

P_1 = \lambda_A A + \lambda_B B where \lambda_A, \lambda_B are constants.

P_2 = \alpha_A A + \alpha_B B where \alpha_A, \alpha_B are constants.

Let C _{AB} be the covariance matrix

C_{AB} = \begin{pmatrix} COV(A,A),&COV(A,B) \\ COV(B,A)&COV(B,B) \end{pmatrix}.

Now, is the "asset pair correlation matrix" supposed to be like:

R_{AB} = \begin {pmatrix} \frac{COV(A,A)}{\sigma_A^2}&\frac{COV(AB)}{\sigma_A \sigma_B} \\ \frac{COV(B,A)}{\sigma_B \sigma_A}& \frac{COV(B,B)}{\sigma_B^2} \end{pmatrix}
 
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Back
Top