Cosine of 1 degree and cosine of 60 degrees?

Click For Summary

Discussion Overview

The discussion revolves around the values of cosine for specific angles, particularly cos(1)° and cos(60)°, as well as the properties of a 30-60-90 right triangle. Participants explore definitions, relationships, and derivations related to trigonometric functions and triangle side lengths.

Discussion Character

  • Exploratory
  • Technical explanation
  • Conceptual clarification
  • Debate/contested
  • Mathematical reasoning

Main Points Raised

  • Some participants question why cos(1)° is approximately 0.9998 and cos(60)° is ½.
  • There is a discussion on the definition of cosine and its relation to right-angled triangles.
  • Some participants express confusion about the side lengths of a 30-60-90 triangle, specifically why the adjacent side is 1√3, the hypotenuse is 2, and the opposite side is 1.
  • Several replies suggest using trigonometric identities and the properties of equilateral triangles to derive the side lengths.
  • Participants debate the necessity of Pythagorean theorem versus trigonometry in understanding the side lengths of the triangle.
  • There are mentions of using calculators and tables to find cosine values, as well as the importance of being in degree mode when calculating.
  • Some participants propose that small angle approximations can be used to understand cosine values for angles close to zero.

Areas of Agreement / Disagreement

Participants do not reach a consensus on the best approach to understand the side lengths of the triangle or the cosine values. Multiple competing views and methods are presented, indicating ongoing debate and exploration of the topic.

Contextual Notes

Some participants express uncertainty about the definitions and relationships involved in trigonometry, indicating a potential gap in foundational knowledge. The discussion also highlights the complexity of deriving trigonometric values and the reliance on geometric interpretations.

Who May Find This Useful

This discussion may be useful for students learning trigonometry, educators seeking to understand common misconceptions, and anyone interested in the geometric foundations of trigonometric functions.

pairofstrings
Messages
411
Reaction score
7
TL;DR
How do I know that cosine of 1 degree is: 0.9998
Why is cos (1)° = 0.9998?
cos(60)° = ½?
Thanks.
 
Mathematics news on Phys.org
pairofstrings said:
Summary:: How do I know that cosine of 1 degree is: 0.9998

Why is cos (1)° = 0.9998?
cos(60)° = ½?
Thanks.
How is the cosine defined?
 
Have you taken a class that included trigonometry yet? That is where trigonometric functions like sin(), cos(), tan(), etc. are studied.
 
In a right-angled triangle 30 - 60 - 90, why adjacent side is given 1√3 unit, its hypotenuse 2 units and its opposite side is 1 unit?
Where did the side lengths 1, 1√3, 2 come from? If it is from Unit Circle then why adjacent side is 1√3. The radius of unit circle is 1 unit that is opposite to 30° angle. I don't see how 1√3 is a radius; there is only one radius in one unit circle!
body_trig-300x168.png
 
pairofstrings said:
In a right-angled triangle 30 - 60 - 90, why adjacent side is given 1√3 unit, its hypotenuse 2 units and its opposite side is 1 unit?
Where did the side lengths 1, 1√3, 2 come from? If it is from Unit Circle then why adjacent side is 1√3. The radius of unit circle is 1 unit that is opposite to 30° angle. I don't see how 1√3 is a radius; there is only one radius in one unit circle!
View attachment 288065
Have you tried doing a bit of trigonometry using the fact that 30 degrees is a third of a right angle?
 
PeroK said:
Have you tried doing a bit of trigonometry using the fact that 30 degrees is a third of a right angle?
It's hard to understand the statement.
One thing I know is side length is minimum if the opposite angle is minimum,
Side length is maximum if the opposite angle is maximum.
Side length is moderate if the opposite angle is between max and min.
 
pairofstrings said:
The radius of unit circle is 1 unit that is opposite to 30° angle. I don't see how 1√3 is a radius;
Typically, the ##1\sqrt 3## is not considered a radius, the 2 is the radius.
In general, cos() is just looked up in a table or found with a calculator. There are formulas that can be applied for the sums of two angles and other special situations.
The cos() of a few angles (0, 30, 45, 60, 90) are expected to be known. (A memory trick is that they follow a pattern ##\sqrt 4/2, \sqrt 3/2, \sqrt 2/2, \sqrt 1/2, \sqrt 0/2##)
Are you currently taking a trigonometry class? That is where these subjects are taught.
 
pairofstrings said:
It's hard to understand the statement.
One thing I know is side length is minimum if the opposite angle is minimum,
Side length is maximum if the opposite angle is maximum.
Side length is moderate if the opposite angle is between max and min.
There must be an elementary proof using the trigonometry of a unit square or a circle.

I must admit I didn't know exactly how to.do this. And, I haven't found anything easy. Yet.
 
All I am trying to understand is if there is a right-angled triangle 30 - 60 - 90, why adjacent side is given 1√3 unit, its hypotenuse 2 units and its opposite side is 1 unit? Where did they come from?
 
  • #10
Algebra to the rescue! $$\cos 30 = \sin 60 =2\sin 30 \cos 30$$
 
  • #11
PeroK said:
Algebra to the rescue! $$\cos 30 = \sin 60 =2\sin 30 \cos 30$$
The graphs don't match.
 
  • #12
pairofstrings said:
The graphs don't match.
What does that mean?
 
  • #13
pairofstrings said:
All I am trying to understand is if there is a right-angled triangle 30 - 60 - 90, why adjacent side is given 1√3 unit, its hypotenuse 2 units and its opposite side is 1 unit? Where did they come from?
In a triangle with hypotenuse=2, the adjacent side length is 2*cos(30deg)=2*##\sqrt 3/2##=##\sqrt 3##. The opposite side is 2*sin(30deg)=2*1/2=1.
 
  • #14
FactChecker said:
In a triangle with hypotenuse=2, the adjacent side length is 2*cos(30deg)=2*##\sqrt 3/2##=##\sqrt 3##. The opposite side is 2*sin(30deg)=2*1/2=1.
Prove it!
 
  • #15
PeroK said:
What does that mean?
PeroK said:
Algebra to the rescue! $$\cos 30 = \sin 60 =2\sin 30 \cos 30$$
I tried to plot the graphs of $$\cos 30, \sin 60, 2\sin 30 \cos 30$$ $$\cos30$$ is not same as $$\sin60$$ and $$2\sin30\cos30$$
 
  • Sad
Likes   Reactions: PeroK
  • #16
PeroK said:
Prove it!
Ha! I thought that the sum-angle formula would do it, but then I saw your post and realized that it may not be simple. I'll take your word for it. :-)
 
  • #17
pairofstrings said:
I tried to plot the graphs of $$\cos 30, \sin 60, 2\sin 30 \cos 30$$ $$\cos30$$ is not same as $$\sin60$$ and $$2\sin30\cos30$$
Well, they are all the same.

Use a calculator if you don't believe me.
 
  • #18
FactChecker said:
Ha! I thought that the sum-angle formula would do it, but then I saw your post and realized that it may not be simple. I'll take your word for it. :-)
Once you get the sine and cosine for 30 degrees ( e.g. from the double angle formula), then you can return to the geometric approach to get them for 15 and 75 degrees.
 
  • #19
pairofstrings said:
I tried to plot the graphs of ##\cos 30, \sin 60, 2\sin 30 \cos 30## ##\cos30## is not same as ##\sin60## and ##2\sin30\cos30##
Plotting graphs doesn't make any sense, because all of these expressions just represent numbers. Furthermore, the various trig identities show that ##\cos(30°)## is exactly equal to ##\sin(60°)##, and the double angle formula (also an identity) shows that ##\sin(60°) = \sin(2 * 30°) = 2\sin(30°)\cos(30°)##. Also, if you're using a calculator, make sure it's in degree mode, not radian mode.

As for why the sides of a 30-60-90 right triangle are 1, 2, and ##\sqrt 3##, draw an equilateral triangle whose sides are 2 units. The interior angles of this triangle are all 60 deg. Draw an altitude from the middle of one side to the opposite vertex. Each half is a 30-60-90 right triangle. The hypotenuse is 2 units, the short side is 1 unit, and you can use the Theorem of Pythagoras to find the third side.

If you haven't studied trigonometry yet, you're not going to get very far with the kinds of questions you're asking.
 
  • Like
Likes   Reactions: pbuk
  • #20
pairofstrings said:
All I am trying to understand is if there is a right-angled triangle 30 - 60 - 90, why adjacent side is given 1√3 unit, its hypotenuse 2 units and its opposite side is 1 unit? Where did they come from?

Take an equilateral triangle of side 2. Cut it in half along a bisector.
 
  • Like
Likes   Reactions: symbolipoint, jasonRF and PeroK
  • #21
Mark44 said:
Plotting graphs doesn't make any sense, because all of these expressions just represent numbers.
Yes, you are obsessed with plotting graphs, all your questions are about plotting graphs but you cannot learn anything this way.

If you don't understand why the base of that triangle is ##\sqrt{3} ## long then you are not ready for sine and cosine yet, you need to start with Pythagoras. This course should do:
https://www.khanacademy.org/math/geometry/hs-geo-trig
 
  • #22
pbuk said:
If you don't understand why the base of that triangle is ##\sqrt{3} ## long then you are not ready for sine and cosine yet, you need to start with Pythagoras.
The problem started with why are those particular side lengths are determined by the 30 degree and 60 degree angles. So Pythagoras is not enough.
 
  • #23
FactChecker said:
The problem started with why are those particular side lengths are determined by the 30 degree and 60 degree angles.
But it continued with
pairofstrings said:
In a right-angled triangle ... Where did the side lengths 1, 1√3, 2 come from?
So while Pythagoras may not be sufficient he is necessary.
 
Last edited:
  • #24
pbuk said:
But it continued with

So while Pythagoras may not be sufficient he is necessary.
I would get the two side lengths using trigonometry, not using the Pythagorian Theorem at all (although it could be used to get the third side).
 
  • #25
pasmith said:
Take an equilateral triangle of side 2. Cut it in half along a bisector.
How did I not see that?
 
  • #26
FactChecker said:
I would get the two side lengths using trigonometry, not using the Pythagorian Theorem at all (although it could be used to get the third side).
As I wrote in post #19, just before @pasmith's post, the problem can be done without invoking trig -- just with a bit of geometry and Pythagorus. Equilateral triangles are studied in geometry, along with the facts that all three sides and angles are equal -- at least they were when I had geometry in the last century.
 
  • #27
The OP also asked about the cosine of one degree. The easiest way I see to get that is that for small angles, ## \sin x \approx x ## when ## x ## is measured in radians, and ## \cos^2 x=1-\sin^2 x ## for all ## x ##. In more detail, ## \sin x=x-x^3/3!+... ## for ## x ## measured in radians.
 
  • #28
pairofstrings said:
Summary:: How do I know that cosine of 1 degree is: 0.9998

Why is cos (1)° = 0.9998?
cos(60)° = ½?
Thanks.
For cos of 1 deg, use power series expansion ##cos(x) \approx 1-\frac{x^2}{2}## where ##x=\frac{\pi}{180}##.
 
  • Like
Likes   Reactions: Charles Link
  • #29
mathman said:
For cos of 1 deg, use power series expansion ##cos(x) \approx 1-\frac{x^2}{2}## where ##x=\frac{\pi}{180}##.
At 1 degree, the small angle approximation ##\sin {x} \approx x ## makes the estimate ##\cos {x} \approx \sqrt {1-x^2}## accurate to 7 digits.
EDIT: But the OP asks how we KNOW that cos(1 degree) = 0.9998. That requires that we can limit the error of the approximation, which complicates things.
 
Last edited:
  • Like
Likes   Reactions: Charles Link
  • #30
pairofstrings said:
Summary:: How do I know that cosine of 1 degree is: 0.9998

Why is cos (1)° = 0.9998?
cos(60)° = ½?
Thanks.
That for 1 degree, just draw the figure and your guess should be about what you have there. For the 60 degree, this is already obvious through fairly simple Geometry.
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 8 ·
Replies
8
Views
6K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
16
Views
2K
  • · Replies 41 ·
2
Replies
41
Views
6K