Could elementary particles be quasi-particles?

johne1618
Messages
368
Reaction score
0
The truly elementary mass seems to be the Planck mass which is much larger than the masses of the particles that we see in nature.

Maybe what we think of as elementary particles are actually just quasi-particles, excitations of the underlying space-time (like phonons are quantised vibrations in a crystal lattice)?

I guess there are quantum gravity researchers working on ideas like this.
 
Last edited:
Physics news on Phys.org
johne1618 said:
Maybe what we think of as elementary particles are actually just quasi-particles, excitations of the underlying space-time (like phonons are quantised vibrations in a crystal lattice)?

I guess there are quantum gravity researchers working on ideas like this.
There are. Two approaches I am aware of are

http://arxiv.org/abs/1109.0080
Emergent Braided Matter of Quantum Geometry
Sundance Bilson-Thompson, Jonathan Hackett, Louis Kauffman, Yidun Wan
(Submitted on 1 Sep 2011)
Abstract: We review and present a few new results of the program of emergent matter as braid excitations of quantum geometry that is represented by braided ribbon networks, which are a generalisation of the spin networks proposed by Penrose and those in models of background independent quantum gravity theories, such as Loop Quantum Gravity and Spin Foam models. This program has been developed in two parallel but complimentary schemes, namely the trivalent and tetravalent schemes. The former studies the trivalent braids on trivalent braided ribbon networks, while the latter investigate the tetravalent braids on tetravalent braided ribbon networks. Both schemes have been fruitful. The trivalent scheme has been quite successful at establishing a correspondence between the trivalent braids and Standard Model particles, whereas the tetravalent scheme has naturally substantiated a rich, dynamical theory of interactions and propagation of tetravalent braids, which is ruled by topological conservation laws. Some recent advances in the program indicate that the two schemes may converge to yield a fundamental theory of matter in quantum spacetime.[/QUOTE]

http://arxiv.org/abs/1006.2230
On the geometrization of matter by exotic smoothness
Authors: Torsten Asselmeyer-Maluga, Helge Rose
(Submitted on 11 Jun 2010 (v1), last revised 4 Jul 2011 (this version, v3))
Abstract: In this paper we will discuss the question how matter emerges from space. For that purpose we consider the smoothness structure as underlying structure of the spacetime manifold. The smoothness structure depends on an infinite structure -- the Casson handle -- representing the failure to smoothly embed a disc without self-intersections (immersed disc). By using the Weierstrass representation, we are able to show that the immersed discs are represented by spinors fulfilling the Dirac equation and leading to a mass-less Dirac term in the Einstein-Hilbert action. Between the immersed discs, there are "connecting tubes" which are realized by an action term of a gauge field. Both terms are genuinely geometrical and characterized by the mean curvature of the components of the Casson handle. We also discuss the gauge group of the theory.

For an ongoing discussion please have a look at https://www.physicsforums.com/showthread.php?t=527611
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
According to recent podcast between Jacob Barandes and Sean Carroll, Barandes claims that putting a sensitive qubit near one of the slits of a double slit interference experiment is sufficient to break the interference pattern. Here are his words from the official transcript: Is that true? Caveats I see: The qubit is a quantum object, so if the particle was in a superposition of up and down, the qubit can be in a superposition too. Measuring the qubit in an orthogonal direction might...
Back
Top