twoflower
- 363
- 0
Hi, assume this sum:
<br /> \sum_{n = 1}^{\infty} \frac{ \sqrt{n^2 + n} - \sqrt[3]{n^3 + n}}{ \sqrt{n^3}}<br />
So I chose this divergent sum:
<br /> b_{n} = \frac{1}{n}<br />
to compare with my original sum. Then
<br /> \lim_{n \rightarrow \infty} \frac{a_{n}}{b_{n}} = \lim_{n \rightarrow \infty} \frac{ \sqrt{n^4 + n^3} - \sqrt[3]{n^6 + n^4}}{ \sqrt{n^3}} = \lim_{n \rightarrow \infty} \sqrt { \frac{ n^4 + n^3}{n^3}} - \lim_{n \rightarrow \infty} \sqrt[3]{ \frac{n^6 + n^4}{n^9}} = \infty - 0 = \infty<br />
Thus my original sum diverges (is "larger" than the divergent sum 1/n).
Would this solution be accepted in test?
Thank you.
<br /> \sum_{n = 1}^{\infty} \frac{ \sqrt{n^2 + n} - \sqrt[3]{n^3 + n}}{ \sqrt{n^3}}<br />
So I chose this divergent sum:
<br /> b_{n} = \frac{1}{n}<br />
to compare with my original sum. Then
<br /> \lim_{n \rightarrow \infty} \frac{a_{n}}{b_{n}} = \lim_{n \rightarrow \infty} \frac{ \sqrt{n^4 + n^3} - \sqrt[3]{n^6 + n^4}}{ \sqrt{n^3}} = \lim_{n \rightarrow \infty} \sqrt { \frac{ n^4 + n^3}{n^3}} - \lim_{n \rightarrow \infty} \sqrt[3]{ \frac{n^6 + n^4}{n^9}} = \infty - 0 = \infty<br />
Thus my original sum diverges (is "larger" than the divergent sum 1/n).
Would this solution be accepted in test?
Thank you.