Critical exponents for the Heisenberg AFM spin-1/2 chain

bpirvu
Messages
5
Reaction score
0
Hi everybody!

I'm looking for the critical exponent ν (i.e. the one of the correlation length) of the Heisenberg (i.e. equal coupling in all directions) antiferromagnetic spin-1/2 model in 1D...
Furthermore, do you know to which universality class it belongs? Is it true that it's the Kosterlitz-Thouless class? Do you know a good (review-) article about this topic? I couldn't find anything useful neither in Sachdev's book nor in Takahashi's one, but maybe I didn't check carfully enough...

One more question: there are two possible ways to move away from criticality in the case of the Heisenberg model, namely altering one of the coulpling s.t. you end up with the XXZ-model, or adding an external homogenous field, say in Z-direction. Do they both yield the same critical behaviour?

Many thanks!
 
Physics news on Phys.org
i remember the <S_z(x)S_z(0)>=x^(1/2)

For these 1d spin problems, such as xxz model and the Heisenberg model in magnetic field, the standard method is bosonization.

Hope these help!
 
yuanyuan5220 said:
i remember the <S_z(x)S_z(0)>=x^(1/2)

For these 1d spin problems, such as xxz model and the Heisenberg model in magnetic field, the standard method is bosonization.

Hope these help!

hmmm... i guess you mean x^(-1/2) for the power law decay at criticality... this would imply for the critical exponent η from Γ(x)~x^-(d-2+η) that η=3/2...
however, what i need is the critical exponent ν of the exponential decay when the system is not critical i.e. Γ(x,ε)~x^-(d-2+η)*exp(-x/ξ(ε)) where ξ(ε)=|ε|^-ν is the correlation length...
 
From the BCS theory of superconductivity is well known that the superfluid density smoothly decreases with increasing temperature. Annihilated superfluid carriers become normal and lose their momenta on lattice atoms. So if we induce a persistent supercurrent in a ring below Tc and after that slowly increase the temperature, we must observe a decrease in the actual supercurrent, because the density of electron pairs and total supercurrent momentum decrease. However, this supercurrent...
Hi. I have got question as in title. How can idea of instantaneous dipole moment for atoms like, for example hydrogen be consistent with idea of orbitals? At my level of knowledge London dispersion forces are derived taking into account Bohr model of atom. But we know today that this model is not correct. If it would be correct I understand that at each time electron is at some point at radius at some angle and there is dipole moment at this time from nucleus to electron at orbit. But how...
Back
Top