Cubic Functions: Derivatives and Graph Tendencies

Click For Summary
SUMMARY

The discussion focuses on analyzing the cubic function f(x) = x^3 – x^2 + 4x – 3, specifically its derivatives and graph behavior. The first derivative, f’(x) = 3x^2 – 2x + 4, has no real roots due to a negative discriminant, indicating that the function does not have any horizontal tangents. Consequently, the function is always increasing, as confirmed by evaluating f’(0) = 4. The second derivative, f’’(x) = 6x – 2, can be used to find points of inflection by setting it to zero.

PREREQUISITES
  • Understanding of cubic functions and their properties
  • Knowledge of derivatives and their significance in calculus
  • Familiarity with the quadratic formula and discriminants
  • Ability to analyze concavity using second derivatives
NEXT STEPS
  • Learn how to determine intervals of increase and decrease using first derivatives
  • Study the concept of points of inflection and how to find them using second derivatives
  • Explore graphical analysis of cubic functions and their behavior
  • Practice solving cubic equations and their derivatives for deeper understanding
USEFUL FOR

Students studying calculus, particularly those focusing on derivatives and graph behaviors of polynomial functions, as well as educators seeking to clarify these concepts for learners.

chubbyorphan
Messages
44
Reaction score
0

Homework Statement


hey Forum! I had a question here I'm struggling with and was wondering if someone could take a look. its Dealing with calculus, specifically derivatives and behaviors of the graph:

http://i41.tinypic.com/mc6opj.jpg
mc6opj.jpg


I just started and part a) already has me stumped D:

The Attempt at a Solution


for intervals of increase or decrease I know we must equate the first derivative to zero.

f(x) = x^3 – x^2 + 4x – 3
f’(x) = 3x^2 – 2x + 4
f’’(x) = 6x – 2

so:
f’(x) = 3x^2 – 2x + 4
0 = 3x^2 – 2x + 4
however I couldn't factor this.. and when I tried to use the quadratic formula.. I got a negative discriminant.
From what I gather this means the derivative has no real roots.. However the actual graph of the original function crosses the x-axis just before 1.. I'm confused! how do I calculate this?:cry:

any advice would be wicked!
 
Physics news on Phys.org
chubbyorphan said:

Homework Statement


hey Forum! I had a question here I'm struggling with and was wondering if someone could take a look. its Dealing with calculus, specifically derivatives and behaviors of the graph:

http://i41.tinypic.com/mc6opj.jpg
mc6opj.jpg


I just started and part a) already has me stumped D:

The Attempt at a Solution


for intervals of increase or decrease I know we must equate the first derivative to zero.

f(x) = x^3 – x^2 + 4x – 3
f’(x) = 3x^2 – 2x + 4
f’’(x) = 6x – 2

so:
f’(x) = 3x^2 – 2x + 4
0 = 3x^2 – 2x + 4
however I couldn't factor this.. and when I tried to use the quadratic formula.. I got a negative discriminant.
From what I gather this means the derivative has no real roots.. However the actual graph of the original function crosses the x-axis just before 1.. I'm confused! how do I calculate this?:cry:

any advice would be wicked!
Since f'(x) isn't 0 for any real number x, then there are no points on the cubic's graph with a horizontal tangent. Since the derivative is never zero, it must always be positive or always negative, meaning that the original function is either always increasing or always decreasing.
 
Thanks! okay that makes a lot of sense actually :D
SO its one or the other, right?

How do I prove whether its constantly increasing or decreasing using derivatives?

cuz normally I would equate the derivative to zero.. take the values that gives me for x..
and consider those 'significant points'.. then I would check the value for the derivative at points after, before, and possibly in between these 'signicant points' to determine where the original function is increasing or decreasing.

but since I have no real values that equate the derivative to zero.. I have no significant points to work with..

and the function crosses the x-axis just before x = 1 (according to my graphing calculator)

here is a picture:
http://i41.tinypic.com/bgoaah.jpg
bgoaah.jpg


but based on this.. am I correct to say:
there is no minimum or maximum?
We can attest to this simply because the function does is solely ^increasing? is that right?

How do I calculate the point in which the function changes from concave down to concave up, or the point of inflection?
Nvm. I think I got point of inflection.. equate second derivative to zero!
then sub x value into original function! cha ching :D

I know I'm asking a lot but this graph really has me grinding my teeth.. thank you so much for helping me through this!
 
You seem to be confusing f(x)=0 and f'(x)=0. If f'(x) is never zero, then to see whether the function is increasing or decreasing you just evaluate f'(x) at any point (just like you would if you had special critical points, except you only have to check f'(x) at one point instead of a couple)- in this example, f'(0)=4 so the function f(x) is always increasing. The fact that f(x)=0 when x is approximately 1 is no big deal
 
Aha! Office_Shredder, I see what you mean! you're right, I was jumbling things up there a little bit! Thanks for clearing that up, homie!
 

Similar threads

  • · Replies 10 ·
Replies
10
Views
2K
Replies
1
Views
1K
  • · Replies 25 ·
Replies
25
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
Replies
3
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K