Current on Infinite Periodic LC Circuit

AI Thread Summary
The discussion revolves around deriving the equation of motion for an infinite periodic LC circuit and its relation to an infinite spring-mass system. The user is attempting to match the motion equations, specifically looking for a way to define the equilibrium length (A) in the context of the LC circuit. They seek guidance on transforming their current current function In(t) into a form that aligns with I(nA,t). Additionally, there is a request for clarification on symbols and the definition of "infinite periodic LC circuit." The user indicates they may have resolved their issue and inquires about closing the thread.
Kyuubi
Messages
18
Reaction score
8
Homework Statement
Show that the current on an infinite periodic LC circuit obeys the wave equation in the long wavelength limit with the speed of the wave being the speed of light.
Relevant Equations
Equations of motion of current in an LC circuit.

(In)''=1/LC(-2In +In+1 +In -1)

Note here In means i sub n. As in the current on the nth inductor.
I wrote down the equation of motion for In(t) and I'm trying to match it with infinite spring mass system equation solution. In the spring mass system, we consider A to be the equilibrium length of the springs, and we can thus write Xn(t) = X(nA,t) and put it back into the equation of motion while taking a Taylor Expansion. This allows us to model the system as a long thin rod that's been pushed. But in the infinite periodic LC Circuit, what exactly is my A? What will help me turn my In(t) to I(nA,t)? In other words, how can I change my equation of motion
 
Physics news on Phys.org
Sorry I'm new to this. Is there a way to delete a thread or close it? I think I've solved my problem.
 
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
TL;DR Summary: Find Electric field due to charges between 2 parallel infinite planes using Gauss law at any point Here's the diagram. We have a uniform p (rho) density of charges between 2 infinite planes in the cartesian coordinates system. I used a cube of thickness a that spans from z=-a/2 to z=a/2 as a Gaussian surface, each side of the cube has area A. I know that the field depends only on z since there is translational invariance in x and y directions because the planes are...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Back
Top