Current Through a Capacitor after switch closed

Click For Summary
SUMMARY

The discussion centers on the behavior of current through a capacitor when a switch is opened in a circuit containing resistors R1, R2, and R3. It is established that when the switch is closed, the capacitor charges to the supply voltage of 5.5V, and the current through the capacitor is zero at steady state. Upon opening the switch, the capacitor begins to discharge, and the current can be calculated using the formula Ic = Vo/(R2 + R3), where Vo is the voltage across R2. The voltage at the open terminals of the capacitor is not zero, as a potential difference exists even without current flow.

PREREQUISITES
  • Understanding of capacitor charging and discharging principles
  • Familiarity with Ohm's Law (V=IR)
  • Knowledge of voltage dividers in electrical circuits
  • Basic concepts of series and parallel resistor configurations
NEXT STEPS
  • Study the transient response of RC circuits during charging and discharging
  • Learn about the exponential decay of current in capacitive circuits
  • Explore the use of voltage dividers in more complex circuits
  • Investigate the impact of different resistor values on capacitor discharge rates
USEFUL FOR

Electrical engineering students, circuit designers, and anyone interested in understanding capacitor behavior in RC circuits.

eatsleep
Messages
42
Reaction score
0
http://imgur.com/PQ4XCEo



2.V=IR



3. I know the capacitor has a voltage of 5.5 because it is charged to the supply voltage, I don't understand what happens to current when the switch is opened.

 

Attachments

  • asdf.png
    asdf.png
    9.7 KB · Views: 1,560
Physics news on Phys.org
eatsleep said:
http://imgur.com/PQ4XCEo
2.V=IR
3. I know the capacitor has a voltage of 5.5 because it is charged to the supply voltage, I don't understand what happens to current when the switch is opened.

Homework Statement

Check your assumptions regarding the fully charged capacitor voltage.

Suppose you removed the capacitor from the circuit. What would be the voltage presented at the open terminals where it was connected?

When the switch opens, can you identify a closed path for current to flow (a circuit) that includes the capacitor as a source of voltage?
 
When the capacitor is removed the open terminals have 0 voltage because there is no current flowing through the terminals.

Would the loop when the switch is open only include the R2 and R3 resistors and the capacitor? Those resistors are in series so the current through the capacitor is 5.5/(R2+R3)

Is this close?
 
eatsleep said:
When the capacitor is removed the open terminals have 0 voltage because there is no current flowing through the terminals.

Would the loop when the switch is open only include the R2 and R3 resistors and the capacitor? Those resistors are in series so the current through the capacitor is 5.5/(R2+R3)

Is this close?

Close. You've identified the correct (sub)circuit. However, the voltage at the open capacitor terminals will not be zero. Consider, for example, an isolated battery. No current flows, yet there is still a potential difference at its open terminals... so potential between points does not require that a current flows.

In the given circuit when the switch is closed, some current will still flow through certain components even when the capacitor has reached its peak voltage and its current is zero. What current still flows in the circuit?
 
gneill said:
Close. You've identified the correct (sub)circuit. However, the voltage at the open capacitor terminals will not be zero. Consider, for example, an isolated battery. No current flows, yet there is still a potential difference at its open terminals... so potential between points does not require that a current flows.

In the given circuit when the switch is closed, some current will still flow through certain components even when the capacitor has reached its peak voltage and its current is zero. What current still flows in the circuit?

When the switch is closed the current would be flowing through R1 and R2, but when the switch opens the current from the capacitor flows in the opposite direction as the current from R1 and R2 so the total is Ic-IR1R2?
 
eatsleep said:
When the switch is closed the current would be flowing through R1 and R2, but when the switch opens the current from the capacitor flows in the opposite direction as the current from R1 and R2 so the total is Ic-IR1R2?

For the moment just consider the currents that flow while the switch is closed. When the capacitor is "full", Ic is zero. So what will be the potential difference V2?

attachment.php?attachmentid=55786&stc=1&d=1360966350.gif
 

Attachments

  • Fig1.gif
    Fig1.gif
    3.4 KB · Views: 2,019
To find the potential difference, would that require that I just use voltage division to find the voltage across R2?
 
eatsleep said:
To find the potential difference, would that require that I just use voltage division to find the voltage across R2?

Yup. There's only the one current flowing at steady state!
 
gneill said:
Yup. There's only the one current flowing at steady state!

So when the capacitor is charged the only current flowing is through R2. Now when the switch is opened the capacitor starts to discharge. Can i use the equation (-Vo/R)*(-t/RC), substituting t=0 for immediately after the switch closes and use (R2+R3) as R?
 
  • #10
eatsleep said:
So when the capacitor is charged the only current flowing is through R2. Now when the switch is opened the capacitor starts to discharge. Can i use the equation (-Vo/R)e(-t/RC), substituting t=0 for immediately after the switch closes and use (R2+R3) as R?

(Don't forget the exponential) Yes. At the moment the switch opens, the full potential Vo drives the current, so the ##e^{(...)}## term is 1.

What value did you find for Vo?
 
  • #11
gneill said:
(Don't forget the exponential) Yes. At the moment the switch opens, the full potential Vo drives the current, so the ##e^{(...)}## term is 1.

What value did you find for Vo?

Vo would be equal to Vs?
 
  • #12
eatsleep said:
Vo would be equal to Vs?

Nope. Did you not look at the voltage divider (R1 and R2) that supplies the voltage to the capacitor branch while the capacitor is charging?
 
  • #13
gneill said:
Nope. Did you not look at the voltage divider (R1 and R2) that supplies the voltage to the capacitor branch while the capacitor is charging?

oh yea, so VR2=Vo, then Vo/(R2+R3)=Ic. Thanks for the all the help
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 22 ·
Replies
22
Views
5K
  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 11 ·
Replies
11
Views
3K
Replies
2
Views
920
  • · Replies 12 ·
Replies
12
Views
2K
Replies
9
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
20
Views
2K