If we differentiate log x (to any base) from first principles, after a few lines of algebra we find it to be (1/x) times the log of the limit as h approaches zero of (1 + h)^(1/h). But this limit is the familiar definition of e. Job done. Using this result its then easy to find (using chain rule or whatever) the derivative of the inverse function, i.e. the exponential function.
I'd say this counts as differentiating the exponential function from first principles. The limit Radou uses, is in my opinion, less well known that the limit I've referred to above.