Dance's question at Yahoo Answers (T(A)=A-A^T)

  • Context: MHB 
  • Thread starter Thread starter Fernando Revilla
  • Start date Start date
Click For Summary
SUMMARY

The transformation T(A) = A - A^T in R^2 is analyzed using the basis B consisting of matrices e_1, e_2, e_3, and e_4. The calculations reveal that T(e_1), T(e_2), and T(e_3) yield the zero matrix, while T(e_4) results in a matrix with non-zero entries. The coordinate matrix of the transformation with respect to the basis B is given by A = [T]_B = [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 2]]. This indicates that the transformation primarily affects the fourth basis vector.

PREREQUISITES
  • Understanding of linear transformations in R^2
  • Familiarity with matrix transposition
  • Knowledge of basis representation in linear algebra
  • Ability to perform matrix operations
NEXT STEPS
  • Study the properties of linear transformations in R^2
  • Learn about matrix transposition and its implications
  • Explore basis and dimension concepts in linear algebra
  • Investigate the effects of transformations on different basis vectors
USEFUL FOR

Students and professionals in mathematics, particularly those focusing on linear algebra, matrix theory, and transformations. This discussion is beneficial for anyone seeking to deepen their understanding of matrix operations and their applications in linear transformations.

Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
Physics news on Phys.org
Hello Dance,

Denote $B=\{e_1,e_2,e_3,e_4\}$ where $$e_1=\begin{bmatrix}{1}&{0}\\{0}&{1}\end{bmatrix}, \;e_2=\begin{bmatrix}{0}&{0}\\{0}&{1}\end{bmatrix}, \;e_3=\begin{bmatrix}{0}&{1}\\{1}&{0}\end{bmatrix}, \;e_4=\begin{bmatrix}{0}&{-1}\\{1}&{0}\end{bmatrix}$$

Then, $$T(e_1)=e_1-e_1^T=\begin{bmatrix}{1}&{0}\\{0}&{1}\end{bmatrix}-\begin{bmatrix}{1}&{0}\\{0}&{1}\end{bmatrix}= \begin{bmatrix}{0}&{0}\\{0}&{0}\end{bmatrix}=0e_1+0e_2+0e_3+0e_4\\T(e_2)=e_2-e_2^T=\begin{bmatrix}{0}&{0}\\{0}&{1}\end{bmatrix}-\begin{bmatrix}{0}&{0}\\{0}&{1}\end{bmatrix}= \begin{bmatrix}{0}&{0}\\{0}&{0}\end{bmatrix}=0e_1+0e_2+0e_3+0e_4\\T(e_3)=e_3-e_3^T=\begin{bmatrix}{0}&{1}\\{1}&{0}\end{bmatrix}-\begin{bmatrix}{0}&{1}\\{1}&{0}\end{bmatrix}= \begin{bmatrix}{0}&{0}\\{0}&{0}\end{bmatrix}=0e_1+0e_2+0e_3+0e_4\\T(e_4)=e_4-e_4^T=\begin{bmatrix}{0}&{-1}\\{0}&{1}\end{bmatrix}-\begin{bmatrix}{0}&{1}\\{-1}&{0}\end{bmatrix}= \begin{bmatrix}{0}&{-2}\\{2}&{0}\end{bmatrix}=0e_1+0e_2+0e_3+2e_4$$ Transposing coefficientes: $$A=[T]_B=\begin{bmatrix}{0}&{0}&{0}& 0\\{0}&{0}&{0}& 0\\{0}&{0}&{0}& 0\\{0}&{0}&{0}& 2\end{bmatrix}$$ If you have further questions, you can post them in the Linear and Abstract Algebra section.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K