MHB Dance's question at Yahoo Answers (T(A)=A-A^T)

  • Thread starter Thread starter Fernando Revilla
  • Start date Start date
Click For Summary
The transformation T(A) = A - A^T in R^2 is analyzed using the basis B consisting of four matrices. Each basis element is transformed, resulting in T(e_1), T(e_2), and T(e_3) yielding zero matrices, while T(e_4) produces a non-zero matrix. The coordinate matrix of the transformation with respect to the basis B is derived as A = [T]_B = [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 2]]. Further inquiries can be directed to the Linear and Abstract Algebra section for additional assistance.
Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
Mathematics news on Phys.org
Hello Dance,

Denote $B=\{e_1,e_2,e_3,e_4\}$ where $$e_1=\begin{bmatrix}{1}&{0}\\{0}&{1}\end{bmatrix}, \;e_2=\begin{bmatrix}{0}&{0}\\{0}&{1}\end{bmatrix}, \;e_3=\begin{bmatrix}{0}&{1}\\{1}&{0}\end{bmatrix}, \;e_4=\begin{bmatrix}{0}&{-1}\\{1}&{0}\end{bmatrix}$$

Then, $$T(e_1)=e_1-e_1^T=\begin{bmatrix}{1}&{0}\\{0}&{1}\end{bmatrix}-\begin{bmatrix}{1}&{0}\\{0}&{1}\end{bmatrix}= \begin{bmatrix}{0}&{0}\\{0}&{0}\end{bmatrix}=0e_1+0e_2+0e_3+0e_4\\T(e_2)=e_2-e_2^T=\begin{bmatrix}{0}&{0}\\{0}&{1}\end{bmatrix}-\begin{bmatrix}{0}&{0}\\{0}&{1}\end{bmatrix}= \begin{bmatrix}{0}&{0}\\{0}&{0}\end{bmatrix}=0e_1+0e_2+0e_3+0e_4\\T(e_3)=e_3-e_3^T=\begin{bmatrix}{0}&{1}\\{1}&{0}\end{bmatrix}-\begin{bmatrix}{0}&{1}\\{1}&{0}\end{bmatrix}= \begin{bmatrix}{0}&{0}\\{0}&{0}\end{bmatrix}=0e_1+0e_2+0e_3+0e_4\\T(e_4)=e_4-e_4^T=\begin{bmatrix}{0}&{-1}\\{0}&{1}\end{bmatrix}-\begin{bmatrix}{0}&{1}\\{-1}&{0}\end{bmatrix}= \begin{bmatrix}{0}&{-2}\\{2}&{0}\end{bmatrix}=0e_1+0e_2+0e_3+2e_4$$ Transposing coefficientes: $$A=[T]_B=\begin{bmatrix}{0}&{0}&{0}& 0\\{0}&{0}&{0}& 0\\{0}&{0}&{0}& 0\\{0}&{0}&{0}& 2\end{bmatrix}$$ If you have further questions, you can post them in the Linear and Abstract Algebra section.