MHB Daniel's question at Yahoo Answers regarding related rates

  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Related rates
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Question on Rate of Change?

The breadth of a rectangle is 1/4 of its length. Calculate the rate of increase of the area of the rectangle when its length is increasing at the rate of 0.4 cm s^-1, at the instant the length is 8 cm.

I came out with this formula : da/dt = da/dl x dl/dt
but i didn't know how to subsitute the values into the formula. Can anyone help me with this.

Answer given : 1.6 cm2 s^-1

Here is a link to the question:

Question on Rate of Change? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Hello Daniel,

Let's let $W$ represent the breadth (width) of the rectangle and $L$ represent the length. We are told the breadth is 1/4 the length, hence we may state:

$\displaystyle W=\frac{L}{4}$

Now, we are asked to find the rate of change of the area with respect to time, so a good place to begin is with the formula for the area of a rectangle:

$\displaystyle A=WL$

Since we are given information on the time rate of change of the length, we want to express the area as a function of the length alone, so we may substitute for the width as follows:

$\displaystyle A=\frac{L}{4}\cdot L=\left(\frac{L}{2} \right)^2$

Now, differentiating with respect to time $t$, we find:

$\displaystyle \frac{dA}{dt}=2\cdot\frac{L}{2}\cdot\frac{1}{2} \cdot\frac{dL}{dt}=\frac{L}{2}\cdot\frac{dL}{dt}$

Now, using the given data $\displaystyle \frac{dL}{dt}=0.4\,\frac{\text{cm}}{s},\,L=8\text{ cm}$, we have:

$\displaystyle \frac{dA}{dt}=\frac{\left(8\text{ cm} \right)}{2}\cdot\left(0.4\,\frac{\text{cm}}{s} \right)=1.6\,\frac{\text{cm}^2}{s}$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top