MHB Daniel's question at Yahoo Answers regarding related rates

  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Related rates
AI Thread Summary
The discussion centers on calculating the rate of increase of a rectangle's area when its length is increasing at 0.4 cm/s and the length is 8 cm. The breadth is defined as one-fourth of the length, leading to the area formula A = (L/4) * L. By differentiating the area with respect to time, the formula dA/dt = (L/2) * (dL/dt) is derived. Substituting the given values results in a rate of increase of the area of 1.6 cm²/s. This calculation effectively illustrates the application of related rates in geometry.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Question on Rate of Change?

The breadth of a rectangle is 1/4 of its length. Calculate the rate of increase of the area of the rectangle when its length is increasing at the rate of 0.4 cm s^-1, at the instant the length is 8 cm.

I came out with this formula : da/dt = da/dl x dl/dt
but i didn't know how to subsitute the values into the formula. Can anyone help me with this.

Answer given : 1.6 cm2 s^-1

Here is a link to the question:

Question on Rate of Change? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Hello Daniel,

Let's let $W$ represent the breadth (width) of the rectangle and $L$ represent the length. We are told the breadth is 1/4 the length, hence we may state:

$\displaystyle W=\frac{L}{4}$

Now, we are asked to find the rate of change of the area with respect to time, so a good place to begin is with the formula for the area of a rectangle:

$\displaystyle A=WL$

Since we are given information on the time rate of change of the length, we want to express the area as a function of the length alone, so we may substitute for the width as follows:

$\displaystyle A=\frac{L}{4}\cdot L=\left(\frac{L}{2} \right)^2$

Now, differentiating with respect to time $t$, we find:

$\displaystyle \frac{dA}{dt}=2\cdot\frac{L}{2}\cdot\frac{1}{2} \cdot\frac{dL}{dt}=\frac{L}{2}\cdot\frac{dL}{dt}$

Now, using the given data $\displaystyle \frac{dL}{dt}=0.4\,\frac{\text{cm}}{s},\,L=8\text{ cm}$, we have:

$\displaystyle \frac{dA}{dt}=\frac{\left(8\text{ cm} \right)}{2}\cdot\left(0.4\,\frac{\text{cm}}{s} \right)=1.6\,\frac{\text{cm}^2}{s}$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top