De Sitter Vacuum: Is it the Only Positive CC Solution?

  • Thread starter Thread starter wabbit
  • Start date Start date
  • Tags Tags
    Positive Vacuum
wabbit
Science Advisor
Gold Member
Messages
1,284
Reaction score
208
Assuming a spacetime with zero Weyl curvature and an Einstein tensor proportional to the metric, is it true that in a finite neighborhood of any point, that spacetime must be isometric to a de Sitter vacuum, or are there other possible solutions, and if so how are they classified?

Thanks
 
Physics news on Phys.org
Einstein tensor proportional to the metric implies constant scalar curvature. Then vanishing of the Weyl curvature implies that the space is maximally symmetric ##R_{mnpq} = k ( g_{mp}g_{nq} - g_{mq}g_{np})## and therefore of constant sectional curvature. Therefore such a space is, by a conformal rescaling of the metric, equivalent to one of the model constant curvature spaces. For signature ##(1,d-1)## and positive cosmological constant, this is indeed de Sitter.
 
  • Like
Likes wabbit
Thanks - you say "by a conformal rescaling", so it isn't isometric, only conformally equivalent ? I must say conformal transformations isn't something I am really familiar with.

Would you have a source to suggest where I could read more about this ?
 
wabbit said:
Thanks - you say "by a conformal rescaling", so it isn't isometric, only conformally equivalent ? I must say conformal transformations isn't something I am really familiar with.

The issue is that the denominator of the formula for sectional curvature involves precisely the same contractions that correspond to the Riemann tensor of a maximally symmetric manifold. So we can rescale ##g' = e^{2\sigma(x)} g## without changing the sectional curvature. With this relation we say that ##g'## is pointwise conformal to ##g##. If there is a diffeomorphism that pulls ##g'## back to ##g##, then we say that the metrics are conformally equivalent and there is a genuine isometry. I think this is a stronger condition than the assumptions warrant.

Would you have a source to suggest where I could read more about this ?

It is probably overkill and yet might not even answer all questions that you might have, but the most specific reference I know of is Besse, Einstein Manifolds. Some results are discussed in the first few pages of this lecture.
 
  • Like
Likes wabbit
Ah, the situation seems more complex than I thought - will check these, thanks for the references.
 
In Philippe G. Ciarlet's book 'An introduction to differential geometry', He gives the integrability conditions of the differential equations like this: $$ \partial_{i} F_{lj}=L^p_{ij} F_{lp},\,\,\,F_{ij}(x_0)=F^0_{ij}. $$ The integrability conditions for the existence of a global solution ##F_{lj}## is: $$ R^i_{jkl}\equiv\partial_k L^i_{jl}-\partial_l L^i_{jk}+L^h_{jl} L^i_{hk}-L^h_{jk} L^i_{hl}=0 $$ Then from the equation: $$\nabla_b e_a= \Gamma^c_{ab} e_c$$ Using cartesian basis ## e_I...
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. The Relativator was sold by (as printed) Atomic Laboratories, Inc. 3086 Claremont Ave, Berkeley 5, California , which seems to be a division of Cenco Instruments (Central Scientific Company)... Source: https://www.physicsforums.com/insights/relativator-circular-slide-rule-simulated-with-desmos/ by @robphy

Similar threads

Back
Top