DeBroglie Wavelength: Proton at Room Temp Scattering Behavior

edpell
Messages
282
Reaction score
4
A proton at room temperature with an energy of 0.025eV has a deBroglie wavelength of about 1A (1E-10 meters). If we shoot two proton beams at each other with is low energy and large wavelength what happens? Do they scatter as if they are small hard particles of size about 1 fermi (1E-15 meters) or do they scatter as if they are big fuzzballs of size about 1A?
 
Physics news on Phys.org
It might be instructive to consider the two protons as classical particles and find the distance of closest approach: the distance at which the Coulomb potential energy equals their total initial kinetic energy.
 
About 2A. So if we say they are each 0.7A they never interpenetrate.

Is this correct? How do we think about the distribution of a room temperature proton? Is it 100% within 1 deBroglie wavelength? Is there a tail to the distribution so we might see an effect in the scattering?
 
Check your math. I get r = about 290 Å for a potential energy of 0.05 eV (8 x 10-21 J)

$$PE = \frac{q^2}{4 \pi \epsilon_0 r}$$
 
I think it is

$$PE = \frac{q}{4 \pi \epsilon_0 r}$$
 
The electric potential V (in volts, in MKS units) at a distance r from a charge q is given by your formula.

When you put a second charge q2 at that location, the electric potential energy of the system (in joules, in MKS units) is given by PE = q2V. When the two charges are equal in magnitude (q2 = q) this leads to my formula.

Unfortunately, in classical electromagnetism, we usually use V to refer to potential (volts), whereas in QM we often use V to refer to potential energy (joules or electron-volts), which causes confusion.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Back
Top