Deducir la Matriz de Rotación 2D y Encontrar Ayuda

Click For Summary
The discussion centers on the confusion surrounding the 2D Rotation Matrix, particularly in an article referenced by the user. The user questions the separation of the matrix and the use of trigonometric functions, suggesting that the vector should use cos(sigma) and sin(sigma) instead of cos(sigma + phi) and sin(sigma + phi). Another participant agrees, stating that the assumption of cos(sigma + phi) equating to cos(sigma) is incorrect and likely a mistake. This error has prompted a deeper analysis of the concepts involved. Overall, the conversation highlights the importance of precision in mathematical expressions related to rotation matrices.
Zipi Damn
Messages
11
Reaction score
0
I was trying to deduce the 2D Rotation Matrix and I got frustrated. So, I found this article: Ampliación del Sólido Rígido/ (in Spanish).

rotacic3b3n-vectores.jpg



I don't understand the second line. How does he separate the matrix in two different parts?
Thanks for your time.
 
Physics news on Phys.org
Hi

In the matrix product in the second line, the vector (cos(sigma + phi), sin(sigma+phi)) should be (cos(sigma), sin(sigma)), which when multiplied by R is by definition (x,y).

Hope this helps.
 
  • Like
Likes 1 person
I don't know why he uses cos(σ+ψ) and sin(σ+ψ) instead of cos(σ) and sin(σ) when the matrix of the second line is separated.

That would make cos(σ+ψ)=cos(σ). Is this true? I can't see that relation. Because there is no similarity between the triangles formed by the vector (x,y) and the vector (x',y'). So it's imposible the cosine is the same.
 
I think it's just a mistake to be honest. It's definitely not true that cos(sigma + phi)=cos(sigma) for all values of these variables, so I think it's safe to assume it's just a mistake.
 
traxter said:
I think it's just a mistake to be honest. It's definitely not true that cos(sigma + phi)=cos(sigma) for all values of these variables, so I think it's safe to assume it's just a mistake.

Yes, it seems to be a mistake. But this mistake has helped me to analize better these concepts.
Anyway, thank you!
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 12 ·
Replies
12
Views
2K
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
Replies
2
Views
9K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
4K