MHB Definite integral with four parameters

AI Thread Summary
The discussion focuses on evaluating the definite integral $\int_{0}^{\infty}\frac{x^{\alpha-1}}{(w+x^{\beta})^{\gamma}}\ dx$. It establishes that the integral can be transformed using a substitution, leading to a relationship with the Beta function. The result is expressed as $\frac{w^{\frac{\alpha}{\beta}-\gamma}}{\beta} B \left( \frac{\alpha}{\beta}, \gamma - \frac{\alpha}{\beta} \right)$. Additionally, it connects the Beta function to the Gamma function, providing a comprehensive formula for the integral. The conditions for the parameters $\alpha, \beta, w > 0$ and $\beta\gamma > \alpha$ are also emphasized.
polygamma
Messages
227
Reaction score
0
Show that $\displaystyle \int_{0}^{\infty}\frac{x^{\alpha-1}}{(w+x^{\beta})^{\gamma}}\ dx = \frac{w^{\frac{\alpha}{\beta}-\gamma}}{\beta} B \left( \frac{\alpha}{\beta}, \gamma - \frac{\alpha}{\beta} \right) = \frac{w^{\frac{\alpha}{\beta}-\gamma}}{\beta} \frac{\Gamma \left( \frac{\alpha}{\beta} \right) \Gamma \left(\gamma - \frac{\alpha}{\beta} \right)}{\Gamma (\gamma)} \ \ \alpha,\beta, w > 0,\ \beta\gamma >\alpha $
 
Last edited:
Mathematics news on Phys.org
Hint: $\displaystyle B(x,y) = \int_{0}^{1} t^{x-1} (1-t)^{y-1} \ dt = \int_{0}^{\infty} \frac{t^{x-1}}{(1+t)^{x+y}} \ dt $
 
$\displaystyle \int_{0}^{\infty}\frac{x^{\alpha-1}}{(w+x^{\beta})^{\gamma}}\ dx$

$ \displaystyle = \frac{1}{w^{\gamma}} \int_{0}^{\infty} \frac{x^{\alpha-1}}{\left(1+\frac{x^{\beta}}{w} \right)^{\gamma}} \ dx $

let $ \displaystyle u = \frac{x^{\beta}}{w} \implies x = w^{\frac{1}{\beta}}u^{\frac{1}{\beta}}$

$ \displaystyle = \frac{w^{\frac{1}{\beta}}}{\beta w^{\gamma}} \int_{0}^{\infty} \frac{ \left(w^{\frac{1}{\beta}} u^{\frac{1}{\beta}}\right)^{\alpha-1}}{(1+u)^{\gamma}} u^{\frac{1}{\beta}-1} \ du = \frac{w^{\frac{\alpha}{\beta}-\gamma}}{\beta} \int_{0}^{\infty} \frac{u^{\frac{\alpha}{\beta}-1}}{(1+u)^{\gamma}} \ du $

$\displaystyle = \frac{w^{\frac{\alpha}{\beta}-\gamma}}{\beta} \int_{0}^{\infty} \frac{u^{\frac{\alpha}{\beta}-1}}{(1+u)^{\frac{\alpha}{\beta} + \left(\gamma - \frac{\alpha}{\beta} \right)}} \ du = \frac{w^{\frac{\alpha}{\beta}-\gamma}}{\beta}B \left( \frac{\alpha}{\beta}, \gamma - \frac{\alpha}{\beta} \right) $
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top