MHB Definite integral with four parameters

Click For Summary
The discussion focuses on evaluating the definite integral $\int_{0}^{\infty}\frac{x^{\alpha-1}}{(w+x^{\beta})^{\gamma}}\ dx$. It establishes that the integral can be transformed using a substitution, leading to a relationship with the Beta function. The result is expressed as $\frac{w^{\frac{\alpha}{\beta}-\gamma}}{\beta} B \left( \frac{\alpha}{\beta}, \gamma - \frac{\alpha}{\beta} \right)$. Additionally, it connects the Beta function to the Gamma function, providing a comprehensive formula for the integral. The conditions for the parameters $\alpha, \beta, w > 0$ and $\beta\gamma > \alpha$ are also emphasized.
polygamma
Messages
227
Reaction score
0
Show that $\displaystyle \int_{0}^{\infty}\frac{x^{\alpha-1}}{(w+x^{\beta})^{\gamma}}\ dx = \frac{w^{\frac{\alpha}{\beta}-\gamma}}{\beta} B \left( \frac{\alpha}{\beta}, \gamma - \frac{\alpha}{\beta} \right) = \frac{w^{\frac{\alpha}{\beta}-\gamma}}{\beta} \frac{\Gamma \left( \frac{\alpha}{\beta} \right) \Gamma \left(\gamma - \frac{\alpha}{\beta} \right)}{\Gamma (\gamma)} \ \ \alpha,\beta, w > 0,\ \beta\gamma >\alpha $
 
Last edited:
Mathematics news on Phys.org
Hint: $\displaystyle B(x,y) = \int_{0}^{1} t^{x-1} (1-t)^{y-1} \ dt = \int_{0}^{\infty} \frac{t^{x-1}}{(1+t)^{x+y}} \ dt $
 
$\displaystyle \int_{0}^{\infty}\frac{x^{\alpha-1}}{(w+x^{\beta})^{\gamma}}\ dx$

$ \displaystyle = \frac{1}{w^{\gamma}} \int_{0}^{\infty} \frac{x^{\alpha-1}}{\left(1+\frac{x^{\beta}}{w} \right)^{\gamma}} \ dx $

let $ \displaystyle u = \frac{x^{\beta}}{w} \implies x = w^{\frac{1}{\beta}}u^{\frac{1}{\beta}}$

$ \displaystyle = \frac{w^{\frac{1}{\beta}}}{\beta w^{\gamma}} \int_{0}^{\infty} \frac{ \left(w^{\frac{1}{\beta}} u^{\frac{1}{\beta}}\right)^{\alpha-1}}{(1+u)^{\gamma}} u^{\frac{1}{\beta}-1} \ du = \frac{w^{\frac{\alpha}{\beta}-\gamma}}{\beta} \int_{0}^{\infty} \frac{u^{\frac{\alpha}{\beta}-1}}{(1+u)^{\gamma}} \ du $

$\displaystyle = \frac{w^{\frac{\alpha}{\beta}-\gamma}}{\beta} \int_{0}^{\infty} \frac{u^{\frac{\alpha}{\beta}-1}}{(1+u)^{\frac{\alpha}{\beta} + \left(\gamma - \frac{\alpha}{\beta} \right)}} \ du = \frac{w^{\frac{\alpha}{\beta}-\gamma}}{\beta}B \left( \frac{\alpha}{\beta}, \gamma - \frac{\alpha}{\beta} \right) $
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 14 ·
Replies
14
Views
3K
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
Replies
3
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K