MHB Definite integral with four parameters

AI Thread Summary
The discussion focuses on evaluating the definite integral $\int_{0}^{\infty}\frac{x^{\alpha-1}}{(w+x^{\beta})^{\gamma}}\ dx$. It establishes that the integral can be transformed using a substitution, leading to a relationship with the Beta function. The result is expressed as $\frac{w^{\frac{\alpha}{\beta}-\gamma}}{\beta} B \left( \frac{\alpha}{\beta}, \gamma - \frac{\alpha}{\beta} \right)$. Additionally, it connects the Beta function to the Gamma function, providing a comprehensive formula for the integral. The conditions for the parameters $\alpha, \beta, w > 0$ and $\beta\gamma > \alpha$ are also emphasized.
polygamma
Messages
227
Reaction score
0
Show that $\displaystyle \int_{0}^{\infty}\frac{x^{\alpha-1}}{(w+x^{\beta})^{\gamma}}\ dx = \frac{w^{\frac{\alpha}{\beta}-\gamma}}{\beta} B \left( \frac{\alpha}{\beta}, \gamma - \frac{\alpha}{\beta} \right) = \frac{w^{\frac{\alpha}{\beta}-\gamma}}{\beta} \frac{\Gamma \left( \frac{\alpha}{\beta} \right) \Gamma \left(\gamma - \frac{\alpha}{\beta} \right)}{\Gamma (\gamma)} \ \ \alpha,\beta, w > 0,\ \beta\gamma >\alpha $
 
Last edited:
Mathematics news on Phys.org
Hint: $\displaystyle B(x,y) = \int_{0}^{1} t^{x-1} (1-t)^{y-1} \ dt = \int_{0}^{\infty} \frac{t^{x-1}}{(1+t)^{x+y}} \ dt $
 
$\displaystyle \int_{0}^{\infty}\frac{x^{\alpha-1}}{(w+x^{\beta})^{\gamma}}\ dx$

$ \displaystyle = \frac{1}{w^{\gamma}} \int_{0}^{\infty} \frac{x^{\alpha-1}}{\left(1+\frac{x^{\beta}}{w} \right)^{\gamma}} \ dx $

let $ \displaystyle u = \frac{x^{\beta}}{w} \implies x = w^{\frac{1}{\beta}}u^{\frac{1}{\beta}}$

$ \displaystyle = \frac{w^{\frac{1}{\beta}}}{\beta w^{\gamma}} \int_{0}^{\infty} \frac{ \left(w^{\frac{1}{\beta}} u^{\frac{1}{\beta}}\right)^{\alpha-1}}{(1+u)^{\gamma}} u^{\frac{1}{\beta}-1} \ du = \frac{w^{\frac{\alpha}{\beta}-\gamma}}{\beta} \int_{0}^{\infty} \frac{u^{\frac{\alpha}{\beta}-1}}{(1+u)^{\gamma}} \ du $

$\displaystyle = \frac{w^{\frac{\alpha}{\beta}-\gamma}}{\beta} \int_{0}^{\infty} \frac{u^{\frac{\alpha}{\beta}-1}}{(1+u)^{\frac{\alpha}{\beta} + \left(\gamma - \frac{\alpha}{\beta} \right)}} \ du = \frac{w^{\frac{\alpha}{\beta}-\gamma}}{\beta}B \left( \frac{\alpha}{\beta}, \gamma - \frac{\alpha}{\beta} \right) $
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Back
Top