motion_ar
- 33
- 0
In classical mechanics, if we consider the motion of a particle of mass m, then
m=constant\vec{v}=d\vec{r}/dt\vec{a}=d\vec{v}/dt\vec{j}=d\vec{a}/dt\ldots
Definition of Momentum (\vec{M})
\vec{M} \; = \int_a^b m \, \vec{a} \, dt \; = \int_a^b m \,d\vec{v} \; = \Delta \; m \, \vec{v}
If \quad \vec{a} = 0 \: \; \rightarrow \; \: \int_a^b m \, \vec{a} \, dt = 0
\rightarrow \; \: \Delta \; m \, \vec{v} = 0
\rightarrow \; \: m \, \vec{v} = constant
\rightarrow \; \: \vec{P} = constant
Definition of Momentum 2 (\vec{M}_2)
\vec{M}_2 \; = \int_a^b m \, \vec{j} \, dt \; = \int_a^b m \,d\vec{a} \; = \Delta \; m \, \vec{a}
If \quad \vec{j} = 0 \: \; \rightarrow \; \: \int_a^b m \, \vec{j} \, dt = 0
\rightarrow \; \: \Delta \; m \, \vec{a} = 0
\rightarrow \; \: m \, \vec{a} = constant
\rightarrow \; \: \vec{P}_2 = constant
Definition of Work (W)
W \; = \int_a^b m \, \vec{a} \cdot d\vec{r} \; = \int_a^b m \,\frac{d\vec{v}}{dt} \cdot \vec{v} \, dt \; = \Delta \; {\textstyle \frac{1}{2}} \, m \, \vec{v}^{\: 2}
If \quad \vec{a} = constant \: \; \rightarrow \; \: \int_a^b m \, \vec{a} \cdot d\vec{r} = \Delta \; m \, \vec{a} \cdot \vec{r}
\rightarrow \; \: \Delta \; {\textstyle \frac{1}{2}} \, m \, \vec{v}^{\: 2} + \Delta \; \left( - \; m \, \vec{a} \cdot \vec{r} \right) = 0
\rightarrow \; \: {\textstyle \frac{1}{2}} \, m \, \vec{v}^{\: 2} + \left( - \; m \, \vec{a} \cdot \vec{r} \right) = constant
\rightarrow \; \: T + V = constant
Definition of Work 2 (W_2)
W_2 \; = \int_a^b m \, \vec{j} \cdot d\vec{v} \; = \int_a^b m \,\frac{d\vec{a}}{dt} \cdot \vec{a} \, dt \; = \Delta \; {\textstyle \frac{1}{2}} \, m \, \vec{a}^{\: 2}
If \quad \vec{j} = constant \: \; \rightarrow \; \: \int_a^b m \, \vec{j} \cdot d\vec{v} = \Delta \; m \, \vec{j} \cdot \vec{v}
\rightarrow \; \: \Delta \; {\textstyle \frac{1}{2}} \, m \, \vec{a}^{\: 2} + \Delta \; \left( - \; m \, \vec{j} \cdot \vec{v} \right) = 0
\rightarrow \; \: {\textstyle \frac{1}{2}} \, m \, \vec{a}^{\: 2} + \left( - \; m \, \vec{j} \cdot \vec{v} \right) = constant
\rightarrow \; \: T_2 + V_2 = constant
If \vec{a}, \vec{j}, \ldots are not constant but \vec{a}, \vec{j}, \ldots are functions of \vec{r}, \vec{v}, \ldots respectively, then the same final result is obtained; even if Newton's second law were not valid (even if \sum \vec{F} \ne m\;\vec{a})
m=constant\vec{v}=d\vec{r}/dt\vec{a}=d\vec{v}/dt\vec{j}=d\vec{a}/dt\ldots
Definition of Momentum (\vec{M})
\vec{M} \; = \int_a^b m \, \vec{a} \, dt \; = \int_a^b m \,d\vec{v} \; = \Delta \; m \, \vec{v}
If \quad \vec{a} = 0 \: \; \rightarrow \; \: \int_a^b m \, \vec{a} \, dt = 0
\rightarrow \; \: \Delta \; m \, \vec{v} = 0
\rightarrow \; \: m \, \vec{v} = constant
\rightarrow \; \: \vec{P} = constant
Definition of Momentum 2 (\vec{M}_2)
\vec{M}_2 \; = \int_a^b m \, \vec{j} \, dt \; = \int_a^b m \,d\vec{a} \; = \Delta \; m \, \vec{a}
If \quad \vec{j} = 0 \: \; \rightarrow \; \: \int_a^b m \, \vec{j} \, dt = 0
\rightarrow \; \: \Delta \; m \, \vec{a} = 0
\rightarrow \; \: m \, \vec{a} = constant
\rightarrow \; \: \vec{P}_2 = constant
Definition of Work (W)
W \; = \int_a^b m \, \vec{a} \cdot d\vec{r} \; = \int_a^b m \,\frac{d\vec{v}}{dt} \cdot \vec{v} \, dt \; = \Delta \; {\textstyle \frac{1}{2}} \, m \, \vec{v}^{\: 2}
If \quad \vec{a} = constant \: \; \rightarrow \; \: \int_a^b m \, \vec{a} \cdot d\vec{r} = \Delta \; m \, \vec{a} \cdot \vec{r}
\rightarrow \; \: \Delta \; {\textstyle \frac{1}{2}} \, m \, \vec{v}^{\: 2} + \Delta \; \left( - \; m \, \vec{a} \cdot \vec{r} \right) = 0
\rightarrow \; \: {\textstyle \frac{1}{2}} \, m \, \vec{v}^{\: 2} + \left( - \; m \, \vec{a} \cdot \vec{r} \right) = constant
\rightarrow \; \: T + V = constant
Definition of Work 2 (W_2)
W_2 \; = \int_a^b m \, \vec{j} \cdot d\vec{v} \; = \int_a^b m \,\frac{d\vec{a}}{dt} \cdot \vec{a} \, dt \; = \Delta \; {\textstyle \frac{1}{2}} \, m \, \vec{a}^{\: 2}
If \quad \vec{j} = constant \: \; \rightarrow \; \: \int_a^b m \, \vec{j} \cdot d\vec{v} = \Delta \; m \, \vec{j} \cdot \vec{v}
\rightarrow \; \: \Delta \; {\textstyle \frac{1}{2}} \, m \, \vec{a}^{\: 2} + \Delta \; \left( - \; m \, \vec{j} \cdot \vec{v} \right) = 0
\rightarrow \; \: {\textstyle \frac{1}{2}} \, m \, \vec{a}^{\: 2} + \left( - \; m \, \vec{j} \cdot \vec{v} \right) = constant
\rightarrow \; \: T_2 + V_2 = constant
If \vec{a}, \vec{j}, \ldots are not constant but \vec{a}, \vec{j}, \ldots are functions of \vec{r}, \vec{v}, \ldots respectively, then the same final result is obtained; even if Newton's second law were not valid (even if \sum \vec{F} \ne m\;\vec{a})