brunotolentin.4
- 6
- 0
How many degree of liberty exist, actually, in a matrix 2x2 ?
I think that is three! Because the conic equation can be wrote like this:
<br /> \begin{bmatrix}<br /> A & B\\ <br /> C & D<br /> \end{bmatrix}<br /> :\begin{bmatrix}<br /> x^2 & xy\\ <br /> yx & y^2<br /> \end{bmatrix}<br /> +<br /> \begin{bmatrix}<br /> E\\ <br /> F<br /> \end{bmatrix}<br /> \cdot<br /> \begin{bmatrix}<br /> x\\ <br /> y<br /> \end{bmatrix}<br /> +G=0<br />
But, xy = yx, thus ... + Bxy + Cyx +... = ... + (B+C)xy + ...
So: <br /> \begin{bmatrix}<br /> A & (B+C)\\ <br /> 0 & D<br /> \end{bmatrix}<br /> :\begin{bmatrix}<br /> x^2 & xy\\ <br /> yx & y^2<br /> \end{bmatrix}<br /> +<br /> \begin{bmatrix}<br /> E\\ <br /> F<br /> \end{bmatrix}<br /> \cdot<br /> \begin{bmatrix}<br /> x\\ <br /> y<br /> \end{bmatrix}<br /> +G=0<br />
Another example: the coefficients of the equation Ay'' + By' + Cy = 0 has three degree of liberty (A, B and C) and it can be converted in a matrix:
y' = a y + b y'
y'' = c y + d y'
So, exist more and more examples that I could give here. But, the felling that I have is the a matrix 2x2 has 3 degree of liberty, although of has four coefficients... My feeling is correct?
I think that is three! Because the conic equation can be wrote like this:
<br /> \begin{bmatrix}<br /> A & B\\ <br /> C & D<br /> \end{bmatrix}<br /> :\begin{bmatrix}<br /> x^2 & xy\\ <br /> yx & y^2<br /> \end{bmatrix}<br /> +<br /> \begin{bmatrix}<br /> E\\ <br /> F<br /> \end{bmatrix}<br /> \cdot<br /> \begin{bmatrix}<br /> x\\ <br /> y<br /> \end{bmatrix}<br /> +G=0<br />
But, xy = yx, thus ... + Bxy + Cyx +... = ... + (B+C)xy + ...
So: <br /> \begin{bmatrix}<br /> A & (B+C)\\ <br /> 0 & D<br /> \end{bmatrix}<br /> :\begin{bmatrix}<br /> x^2 & xy\\ <br /> yx & y^2<br /> \end{bmatrix}<br /> +<br /> \begin{bmatrix}<br /> E\\ <br /> F<br /> \end{bmatrix}<br /> \cdot<br /> \begin{bmatrix}<br /> x\\ <br /> y<br /> \end{bmatrix}<br /> +G=0<br />
Another example: the coefficients of the equation Ay'' + By' + Cy = 0 has three degree of liberty (A, B and C) and it can be converted in a matrix:
y' = a y + b y'
y'' = c y + d y'
So, exist more and more examples that I could give here. But, the felling that I have is the a matrix 2x2 has 3 degree of liberty, although of has four coefficients... My feeling is correct?