Depletion width of linearly doped PN-junction

Click For Summary
The discussion focuses on deriving the depletion region width of a linearly doped PN-junction. The user has established expressions for electric field and potential, leading to a cubic equation in terms of the depletion width in the N region, represented as Kx_n^3 + (K-S)x_n^2 - (q/3ε) = 0. The solution to this cubic equation can be found using the Cardano formula, which will then allow for the calculation of the depletion width in the P region by substituting back into the electric field equation. The user seeks assistance in isolating the depletion widths without creating a dependency between them. The discussion emphasizes the mathematical approach needed to resolve the depletion region width effectively.
Mr_Allod
Messages
39
Reaction score
16
Homework Statement
Derive expressions for the electric field distribution and potential for a PN Junction with linear doping gradient then use this to calculate the depletion width as a function of the bias voltage ##V_bi##
Relevant Equations
##x<0## (P-Region) doping concentration: ##N_A = -Sx##
##x>0## (N-Region) the doping concentration is: ##N_D = Kx##
Electric Field in P-Region: ##E_P=\frac {qS}{2\epsilon}(x^2 - x_p^2)##
Electric Field in N-Region: ##E_N=\frac {qK}{2\epsilon}(x^2 - x_n^2)##
Potential in P-Region: ##V = V_p + \frac {qM_A}{\epsilon} \left( \frac {x_p^2x}{2} - \frac {x^3}{6} + \frac {x_p^3}{3} \right)##
Potential in N-Region: ##V = V_n + \frac {qM_A}{\epsilon} \left( \frac {x_n^2x}{2} - \frac {x^3}{6} - \frac {x_p^3}{3} \right)##
Continuity at x = 0:
$$Sx_p^2 = Kx_n^2$$
$$V_{bi} = V_n - V_p = \frac {q}{3\epsilon} \left( Sx_p^3 + Kx_n^3\right)$$
Hello there, I have derived the expressions for electric field and potential to be the ones above, then for continuity at ##x = 0## I set the electric fields and potentials to be equal to yield the expressions:
$$Sx_p^2 = Kx_n^2$$
$$V_{bi} = V_n - V_p = \frac {q}{3\epsilon} \left( Sx_p^3 + Kx_n^3\right)$$

I am now stuck on how to find an expression for the depletion region width, which in our class we have defined as ##|x_p|+x_n##, where ##-x_p## and ##x_n## are the edges of the depletion layer in the P and N regions respectively. I just can't seem to find a way to isolate them without ending up with one as a function of the other, which is not terribly useful so I would really appreciate some help with this.
 
Physics news on Phys.org
The solution to this problem is to substitute the equation for the biasing voltage into the equation for electric field:$$\frac{q}{3\epsilon} \left( Sx_p^3 + Kx_n^3\right) = Sx_p^2 - Kx_n^2$$Rearranging this equation gives us:$$Kx_n^3 + (K-S)x_n^2 - \frac{q}{3\epsilon} = 0$$This is a cubic equation in terms of ##x_n##, which can be solved using the Cardano formula. Once we have the solution for ##x_n##, we can then solve for ##x_p## by substituting it into the equation for electric field and solving for ##x_p##.
 
I want to find the solution to the integral ##\theta = \int_0^{\theta}\frac{du}{\sqrt{(c-u^2 +2u^3)}}## I can see that ##\frac{d^2u}{d\theta^2} = A +Bu+Cu^2## is a Weierstrass elliptic function, which can be generated from ##\Large(\normalsize\frac{du}{d\theta}\Large)\normalsize^2 = c-u^2 +2u^3## (A = 0, B=-1, C=3) So does this make my integral an elliptic integral? I haven't been able to find a table of integrals anywhere which contains an integral of this form so I'm a bit stuck. TerryW

Similar threads

  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 3 ·
Replies
3
Views
5K
  • · Replies 8 ·
Replies
8
Views
16K
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 2 ·
Replies
2
Views
12K
Replies
2
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 30 ·
2
Replies
30
Views
7K