Depletion width of linearly doped PN-junction

AI Thread Summary
The discussion focuses on deriving the depletion region width of a linearly doped PN-junction. The user has established expressions for electric field and potential, leading to a cubic equation in terms of the depletion width in the N region, represented as Kx_n^3 + (K-S)x_n^2 - (q/3ε) = 0. The solution to this cubic equation can be found using the Cardano formula, which will then allow for the calculation of the depletion width in the P region by substituting back into the electric field equation. The user seeks assistance in isolating the depletion widths without creating a dependency between them. The discussion emphasizes the mathematical approach needed to resolve the depletion region width effectively.
Mr_Allod
Messages
39
Reaction score
16
Homework Statement
Derive expressions for the electric field distribution and potential for a PN Junction with linear doping gradient then use this to calculate the depletion width as a function of the bias voltage ##V_bi##
Relevant Equations
##x<0## (P-Region) doping concentration: ##N_A = -Sx##
##x>0## (N-Region) the doping concentration is: ##N_D = Kx##
Electric Field in P-Region: ##E_P=\frac {qS}{2\epsilon}(x^2 - x_p^2)##
Electric Field in N-Region: ##E_N=\frac {qK}{2\epsilon}(x^2 - x_n^2)##
Potential in P-Region: ##V = V_p + \frac {qM_A}{\epsilon} \left( \frac {x_p^2x}{2} - \frac {x^3}{6} + \frac {x_p^3}{3} \right)##
Potential in N-Region: ##V = V_n + \frac {qM_A}{\epsilon} \left( \frac {x_n^2x}{2} - \frac {x^3}{6} - \frac {x_p^3}{3} \right)##
Continuity at x = 0:
$$Sx_p^2 = Kx_n^2$$
$$V_{bi} = V_n - V_p = \frac {q}{3\epsilon} \left( Sx_p^3 + Kx_n^3\right)$$
Hello there, I have derived the expressions for electric field and potential to be the ones above, then for continuity at ##x = 0## I set the electric fields and potentials to be equal to yield the expressions:
$$Sx_p^2 = Kx_n^2$$
$$V_{bi} = V_n - V_p = \frac {q}{3\epsilon} \left( Sx_p^3 + Kx_n^3\right)$$

I am now stuck on how to find an expression for the depletion region width, which in our class we have defined as ##|x_p|+x_n##, where ##-x_p## and ##x_n## are the edges of the depletion layer in the P and N regions respectively. I just can't seem to find a way to isolate them without ending up with one as a function of the other, which is not terribly useful so I would really appreciate some help with this.
 
Physics news on Phys.org
The solution to this problem is to substitute the equation for the biasing voltage into the equation for electric field:$$\frac{q}{3\epsilon} \left( Sx_p^3 + Kx_n^3\right) = Sx_p^2 - Kx_n^2$$Rearranging this equation gives us:$$Kx_n^3 + (K-S)x_n^2 - \frac{q}{3\epsilon} = 0$$This is a cubic equation in terms of ##x_n##, which can be solved using the Cardano formula. Once we have the solution for ##x_n##, we can then solve for ##x_p## by substituting it into the equation for electric field and solving for ##x_p##.
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top