Derivation of momentum operator

pcflores
Messages
9
Reaction score
0
hello,

i am trying to learn the derivation of the momentum operator and i found 2 ways of deriving it. one is using Fourier transform and the other is taking the time derivative of the expectation value of x.

i just want to know what is the physical interpretation of the time rate of change of <x>

thank you
 
Physics news on Phys.org
Its related to Stones Theorem and infinitesimal generators:
http://en.wikipedia.org/wiki/Stone's_theorem_on_one-parameter_unitary_groups

If you really want to understand the momentum operator get a hold of a copy of Ballentine - Quantum Mechanics - A Modern Development and have a look at chapter 3:
https://www.amazon.com/dp/9814578584/?tag=pfamazon01-20

Its true basis is the symmetries of Galilean relativity - but that revelation is something you need to discover for yourself - its very profound and deep. Revelations like that are best understood by working through the detail.

Added Later:

Then get a hold of Landaus classic on Mechanics:
https://www.amazon.com/dp/0750628960/?tag=pfamazon01-20

It shows classical mechanics has exactly the same basis. The symmetries of Galilean relativity is the key to both just as the symmetries of the Lorentz transformations is the key to relativity.

Thanks
Bill
 
Last edited by a moderator:
bhobba said:
Its related to Stones Theorem and infinitesimal generators:
http://en.wikipedia.org/wiki/Stone's_theorem_on_one-parameter_unitary_groups

If you really want to understand the momentum operator get a hold of a copy of Ballentine - Quantum Mechanics - A Modern Development and have a look at chapter 3:
https://www.amazon.com/dp/9814578584/?tag=pfamazon01-20

Its true basis is the symmetries of Galilean relativity - but that revelation is something you need to discover for yourself - its very profound and deep. Revelations like that are best understood by working through the detail.

Thanks
Bill

thank you
 
Last edited by a moderator:
pcflores said:
thank you

You are most welcome.

Also see if you can have a look at Landau as well - you may have missed that bit since I added it later.

Thanks
Bill
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...
Back
Top