Derivation of relativistic E_kin

tomwilliam2
Messages
117
Reaction score
2
In my textbook there is a derivation of relativistic kinetic energy starting from an integral of the force applied over the distance required to take the particle's speed from 0 to v.
There's one stage of the derivation I don't understand on mathematical grounds, which is going from:

$$E_k = \int_0^{v} u\ d\left( \frac{mu}{\sqrt{1-(u^2/c^2)}}\right )$$
To the next line, which is:
$$E_k = \left [ \frac{mu^2}{\sqrt{1-(u^2/c^2)}}\right]_0^v - \int_0^v \frac{mu}{\sqrt{1-(u^2/c^2)}}\ du$$
I guess they have used integration by parts, but how do you get the change of integrating variable? I only really know the rule ##\int f'g dx = fg - \int fg' dx## and can't seem to make it fit here.
Thanks in advance
 
Physics news on Phys.org
What was the original variable being integrated over?
What was substituted in it's place?
 
Take:
f' = d (\frac{mu}{\sqrt{1-(u^2/c^2)}}), g = u
 
Ah, thanks phyzguy...the penny has dropped.
 
In Philippe G. Ciarlet's book 'An introduction to differential geometry', He gives the integrability conditions of the differential equations like this: $$ \partial_{i} F_{lj}=L^p_{ij} F_{lp},\,\,\,F_{ij}(x_0)=F^0_{ij}. $$ The integrability conditions for the existence of a global solution ##F_{lj}## is: $$ R^i_{jkl}\equiv\partial_k L^i_{jl}-\partial_l L^i_{jk}+L^h_{jl} L^i_{hk}-L^h_{jk} L^i_{hl}=0 $$ Then from the equation: $$\nabla_b e_a= \Gamma^c_{ab} e_c$$ Using cartesian basis ## e_I...
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. The Relativator was sold by (as printed) Atomic Laboratories, Inc. 3086 Claremont Ave, Berkeley 5, California , which seems to be a division of Cenco Instruments (Central Scientific Company)... Source: https://www.physicsforums.com/insights/relativator-circular-slide-rule-simulated-with-desmos/ by @robphy
Back
Top