Derivation of relativistic E_kin

tomwilliam2
Messages
117
Reaction score
2
In my textbook there is a derivation of relativistic kinetic energy starting from an integral of the force applied over the distance required to take the particle's speed from 0 to v.
There's one stage of the derivation I don't understand on mathematical grounds, which is going from:

$$E_k = \int_0^{v} u\ d\left( \frac{mu}{\sqrt{1-(u^2/c^2)}}\right )$$
To the next line, which is:
$$E_k = \left [ \frac{mu^2}{\sqrt{1-(u^2/c^2)}}\right]_0^v - \int_0^v \frac{mu}{\sqrt{1-(u^2/c^2)}}\ du$$
I guess they have used integration by parts, but how do you get the change of integrating variable? I only really know the rule ##\int f'g dx = fg - \int fg' dx## and can't seem to make it fit here.
Thanks in advance
 
Physics news on Phys.org
What was the original variable being integrated over?
What was substituted in it's place?
 
Take:
f' = d (\frac{mu}{\sqrt{1-(u^2/c^2)}}), g = u
 
Ah, thanks phyzguy...the penny has dropped.
 
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
So, to calculate a proper time of a worldline in SR using an inertial frame is quite easy. But I struggled a bit using a "rotating frame metric" and now I'm not sure whether I'll do it right. Couls someone point me in the right direction? "What have you tried?" Well, trying to help truly absolute layppl with some variation of a "Circular Twin Paradox" not using an inertial frame of reference for whatevere reason. I thought it would be a bit of a challenge so I made a derivation or...
Back
Top